scholarly journals Beyond taxonomic diversity: Revealing spatial mismatches in phylogenetic and functional diversity facets in Mediterranean tree communities in southern France

2020 ◽  
Vol 474 ◽  
pp. 118318
Author(s):  
Aggeliki Doxa ◽  
Vincent Devictor ◽  
Alex Baumel ◽  
Daniel Pavon ◽  
Frédéric Médail ◽  
...  
Sociobiology ◽  
2016 ◽  
Vol 63 (3) ◽  
pp. 941 ◽  
Author(s):  
Luana Priscila de Carvalho Pereira ◽  
Fábio Souto Almeida ◽  
André Barbosa Vargas ◽  
Marcel Santos de Araújo ◽  
Antônio José Mayhé-Nunes ◽  
...  

The present study aimed at assessing the effects of climate seasonality on poneromorph ants in the Brazilian Amazon, by studying variations in composition, richness, and taxonomic and functional diversity. The study was carried out in the Tapirapé-Aquiri National Forest, southeastern Pará State. We collected poneromorph ants in three areas of native forest with pitfall traps and sardine baits on the ground and vegetation, in two dry and rainy seasons. We collected 46 species of poneromorph ants, which belong to two subfamilies and eleven genera. The species composition, richness and taxonomic diversity did not vary significantly between seasons. There was no significant difference in the frequency of species of functional groups between dry and rainy seasons. There was no significant difference in the average richness and average diversity of functional groups between the dry and rainy seasons. In our study we found no seasonal differences in composition, taxonomic and functional richness and diversity of poneromorph ants in the Amazon, which is useful for future studies that aim at using those ants as bioindicators. In addition, the identification of the species made in the present study has special relevance as it contributes to advance the knowledge of poneromorph ant diversity in the Amazon.


2019 ◽  
Author(s):  
Mark K. L. Wong ◽  
Benoit Guénard ◽  
Owen T. Lewis

AbstractInvasive insects represent major threats to ecosystems worldwide. Yet their effects on the functional dimension of biodiversity, measured as the diversity and distribution of traits, are overlooked. Such measures often determine the resilience of ecological communities and the ecosystem processes they modulate. The fire ant Solenopsis invicta is a highly problematic invasive species occurring on five continents. Its impacts on the taxonomic diversity of native ant communities have been studied but its impacts on their functional diversity are unknown. Comparing invaded and uninvaded plots in tropical grasslands of Hong Kong, we investigated how the presence of S. invicta affects the diversity and distribution of ant species and traits within and across communities, the functional identities of communities, and functionally unique species. We calculated the functional diversity of individual species, including the trait variation from intraspecific polymorphisms, and scaled up these values to calculate functional diversity at the community level. Invasion had only limited effects on species richness and functional richness, which were 13% and 8.5% lower in invaded communities respectively. In contrast, invasion had pronounced effects on taxonomic and functional composition due to turnover in species and trait values. Furthermore, invaded communities were functionally more homogeneous, displaying 23% less turnover and 56% more redundancy than uninvaded communities, as well as greater clustering and lower divergence in trait values. Invaded communities had fewer functionally-unique individuals and were characterized by ant species with narrower heads and bodies and shorter mandibles. Our results suggest that studies based only on taxonomic measures of diversity or indices describing trait variety risk underestimating the full ramifications of invasions. Investigating the diversity and distributions of traits at species, community and landscape levels can reveal the cryptic impacts of alien species which, despite causing little taxonomic change, may substantially modify the structure and functioning of ecological communities.


BioScience ◽  
2019 ◽  
Vol 69 (10) ◽  
pp. 800-811 ◽  
Author(s):  
Christophe Malaterre ◽  
Antoine C Dussault ◽  
Sophia Rousseau-Mermans ◽  
Gillian Barker ◽  
Beatrix E Beisner ◽  
...  

Abstract Functional diversity holds the promise of understanding ecosystems in ways unattainable by taxonomic diversity studies. Underlying this promise is the intuition that investigating the diversity of what organisms actually do (i.e., their functional traits) within ecosystems will generate more reliable insights into the ways these ecosystems behave, compared to considering only species diversity. But this promise also rests on several conceptual and methodological (i.e., epistemic) assumptions that cut across various theories and domains of ecology. These assumptions should be clearly addressed, notably for the sake of an effective comparison and integration across domains, and for assessing whether or not to use functional diversity approaches for developing ecological management strategies. The objective of this contribution is to identify and critically analyze the most salient of these assumptions. To this aim, we provide an epistemic roadmap that pinpoints these assumptions along a set of historical, conceptual, empirical, theoretical, and normative dimensions.


Plants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 479 ◽  
Author(s):  
Hanif ◽  
Guo ◽  
Moniruzzaman ◽  
He ◽  
Yu ◽  
...  

Plant attributes have direct and indirect effects on soil microbes via plant inputs and plant-mediated soil changes. However, whether plant taxonomic and functional diversities can explain the soil microbial diversity of restored forest ecosystems remains elusive. Here, we tested the linkage between plant attributes and soil microbial communities in four restored forests (Acacia species, Eucalyptus species, mixed coniferous species, mixed native species). The trait-based approaches were applied for plant properties and high-throughput Illumina sequencing was applied for fungal and bacterial diversity. The total number of soil microbial operational taxonomic units (OTUs) varied among the four forests. The highest richness of fungal OTUs was found in the Acacia forest. However, bacterial OTUs were highest in the Eucalyptus forest. Species richness was positively and significantly related to fungal and bacterial richness. Plant taxonomic diversity (species richness and species diversity) explained more of the soil microbial diversity than the functional diversity and soil properties. Prediction of fungal richness was better than that of bacterial richness. In addition, root traits explained more variation than the leaf traits. Overall, plant taxonomic diversity played a more important role than plant functional diversity and soil properties in shaping the soil microbial diversity of the four forests.


2018 ◽  
Vol 8 (6) ◽  
pp. 3478-3490 ◽  
Author(s):  
Boris A. Tinoco ◽  
Vinicio E. Santillán ◽  
Catherine H. Graham

2018 ◽  
Author(s):  
Thomas J. Trott

Rare species can significantly contribute to ecosystem stability and resiliency. Furthermore, wider taxonomic trees can support a wider range of functional diversity. These ideas with the notion that functional diversity leads to ecosystem resiliency suggest rare species can disproportionately increase taxonomic and functional diversity. To test this hypothesis, functional distinctness was used to estimate functional diversity, and average taxonomic distinctness to evaluate taxonomic diversity for rocky intertidal species assemblages sampled by three surveys separated by years examining a total 41 locations spanning the Gulf of Maine. Fifteen life-history and ecological traits were assigned to the 95 species observed using a total of 90 options. Species were ranked either rare or abundant using incidence. Influence of rarity on functional and taxonomic distinctness was appraised by comparing intact assemblages to ones where rare species (observed once per location) were removed to imitate rare species loss. For intact assemblages, functional and taxonomic distinctness correlated. However, rare species removal significantly decreased functional diversity for some assemblages while taxonomic diversity was less affected. Removal of abundant species produced no significant effects. Results demonstrate rare species can increase functional diversity without necessarily being rare taxonomically. Abundant species exert their effects through their numbers; mere presence makes no difference.


2020 ◽  
Author(s):  
Benedicto Vargas-Larreta ◽  
Jorge O. López-Martínez ◽  
Jose Javier Corral-Rivas ◽  
Francisco Javier Hernández

Abstract Background: Studies on the relationships between biodiversity and ecosystem productivity have suggested that species richness and functional diversity are the main drivers of ecosystem processes. There is no general pattern regarding the relationship found in various studies, and positive, unimodal, negative, and neutral relationships keep the issue controversial. In this study, taxonomic diversity vs functional diversity as drivers of above-ground biomass were compared, and the mechanisms that influence biomass production were investigated by testing the complementarity and the mass-ratio hypoteses.Methods: Using data from 414 permanent sampling plots, covering 23% of temperate forests in the Sierra Madre Occiental (Mexico), we estimated the above-ground biomass (AGB) for trees ≥7.5 cm d.b.h. in managed and unmanaged stands. We evaluated AGB-diversity relationships (species richness, Shannon-Wiener and Simpson indices), AGB-weighted mean community values ​​(CWM) of tree species functional traits (maximum height, leaf size, and wood density) and five measures of functional diversity (functional dispersion, functional richness, functional uniformity, functional diversity, and RaoQ index).Results: We reveal a consistent hump-shaped relationship between aboveground biomass and species richness in managen and unmanaged forest. CWM_Hmax was the most important predictor of AGB in both managed and unmanaged stands, which suggests that the mechanism that explains the above-ground biomass in these ecosystems is dominated by certain highly productive species in accordance of the mass-ratio hypothesis. There were no significant relationships between taxonomic diversity metrics (Shannon-Wiener and Simpson indices) or measures of functional diversity with AGB. The results support the mass-ratio hypothesis to explain the AGB variations.Conclusions: We concluded that diversity does not influence biomass production in the temperate mixed-species and uneven-aged forests of northern Mexico. These forests showed the classic hump-shaped productivity-species richness relationship, with biomass accumulation increasing at low to intermediate levels of species plant diversity and decreasing at high species richness. Functional diversity explains better forest productivity than classical diversity metrics.


2019 ◽  
Vol 36 ◽  
pp. 1-12 ◽  
Author(s):  
Sandra Maria Hartz ◽  
Elise Amador Rocha ◽  
Fernanda Thiesen Brum ◽  
André Luís Luza ◽  
Taís de Fátima Ramos Guimarães ◽  
...  

In this study we investigated the influence of landscape variables on the alpha taxonomic and functional diversity of fish communities in coastal lakes. We built an analytical framework that included possible causal connections among variables, which we analyzed using path analysis. We obtained landscape metrics for the area, shape and connectivity (estuary connectivity and primary connectivity to neighboring lakes) of 37 coastal lakes in the Tramandaí River Basin. We collected fish data from 49 species using standardized sampling with gillnets and obtained a set of traits related to dispersal abilities and food acquisition. The model that best explained the taxonomic diversity and functional richness took into account the shape of the lakes. Functional richness was also explained by estuary connectivity. Functional evenness and dispersion were not predicted by area or connectivity, but they were influenced by the abundant freshwater species. This indicates that all lakes support most of the regional functional diversity. The results highlight the importance of the dispersal process in this lake system and allow the conclusion that considering multiple diversity dimensions can aid the conservation of local and regional fish communities.


2016 ◽  
Author(s):  
Doriane Stagnol ◽  
Lise Bacouillard ◽  
Dominique Davoult

Among the potential indicators of biodiversity, those based on the functional traits of species are interesting because they measure the aspects of diversity that potentially affect community assembly and function. However, trait-based approaches are still rarely considered and little is known about the degree to which taxonomic diversity (TD) and functional diversity (FD) are correlated. Yet, this relationship is thought to depend on the extent of ecological redundancy within the assemblage, i.e. the number of taxonomically distinct species that exhibit similar ecological functions. In this study, we characterized taxonomic and functional diversity within and between two marine habitats (rocky shore vs mudflats) under human-induced disturbances. Models were also used to test whether the relationship between TD and FD differed according to the indices used to characterize them. We found little effect of human disturbance on the shape of the TD-FD relationship, whereas communities of the mudflat appeared to be less redundant than those of rocky shore. This could be explained by the assembly rules of ecosystems: biotic filtering (competition and resource partitioning) reduces redundancy by selecting for functionally dissimilar species, whereas abiotic filtering increases redundancy by selecting for similar species sharing adaptations to a particular environment. The rocky shore environment is characterized by heterogeneity that allows the formation of distinct ecological niches that can be colonized by similar species: the abiotic filtering does not limit the redundancy permitted by habitat. Conversely, in the more homogeneous environment of mudflat, the biotic filter mitigates redundancy. Trait-mediated abiotic filtering appears to play an important role in community assembly in complex habitats, whereas the relative importance of competitive exclusion appears to be greater in homogeneous habitats.


Sign in / Sign up

Export Citation Format

Share Document