functional evenness
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 13)

H-INDEX

8
(FIVE YEARS 2)

2021 ◽  
Vol 70 (1) ◽  
Author(s):  
Hans-Rolf Gregorius ◽  
Elizabeth M. Gillet

AbstractWhile evenness is understood to be maximal if all types (species, genotypes, alleles, etc.) are represented equally (via abundance, biomass, area, etc.), its opposite, maximal unevenness, either remains conceptually in the dark or is conceived as the type distribution that minimizes the applied evenness index. The latter approach, however, frequently leads to conceptual inconsistency due to the fact that the minimizing distribution is not specifiable or is monomorphic. The state of monomorphism, however, is indeterminate in terms of its evenness/unevenness characteristics. Indeed, the semantic indeterminacy also shows up in the observation that monomorphism represents a state of pronounced discontinuity for the established evenness indices. This serious conceptual inconsistency is latent in the widely held idea that evenness is an independent component of diversity. As a consequence, the established evenness indices largely appear as indicators of relative polymorphism rather than as indicators of evenness. In order to arrive at consistent measures of evenness/unevenness, it seems indispensable to determine which states are of maximal unevenness and then to assess the position of a given type distribution between states of maximal evenness and maximal unevenness. Since semantically, unevenness implies inequality among type representations, its maximum is reached if all type representations are equally different. For given number of types, this situation is realized if type representations, when ranked in descending order, show equal differences between adjacent types. We term such distributions “stepladders” as opposed to “plateaus” for uniform distributions. Two approaches to new evenness measures are proposed that reflect different perspectives on the positioning of type distributions between the closest stepladders and the closest plateaus. Their two extremes indicate states of complete evenness and complete unevenness, and the midpoint is postulated to represent the turning point between prevailing evenness and prevailing unevenness. The measures are graphically illustrated by evenness surfaces plotted above frequency simplices for three types, and by transects through evenness surfaces for more types. The approach can be generalized to include variable differences between types (as required in analyses of functional evenness) by simply replacing types with pairs of different types. Pairs, as the new types, can be represented by their abundances, for example, and these can be modified in various ways by the differences between the two types that form the pair. Pair representations thus consist of both the difference between the paired types and their frequency. Omission of pair frequencies leads to conceptual ambiguity. Given this specification of pair representations, their evenness/unevenness can be evaluated using the same indices developed for simple types. Pair evenness then turns out to quantify dispersion evenness.


2021 ◽  
Author(s):  
Markus Majaneva ◽  
Janne-Markus Rintala ◽  
Jaanika Blomster

AbstractCiliophora is a phylum of unicellular eukaryotes that are common and have pivotal roles in aquatic environments. Sea ice is a marine habitat, which is composed of a matrix of solid ice and pockets of saline water in which Ciliophora thrive. Here, we used phylogenetic placement to identify Ciliophora 18S ribosomal RNA reads obtained from wintertime water and sea ice, and assigned functions to the reads based on this taxonomic information. Based on our results, sea-ice Ciliophora assemblages are poorer in taxonomic and functional richness than under-ice water and water-column assemblages. Ciliophora diversity stayed stable throughout the ice-covered season both in sea ice and in water, although the assemblages changed during the course of our sampling. Under-ice water and the water column were distinctly predominated by planktonic orders Choreotrichida and Oligotrichida, which led to significantly lower taxonomic and functional evenness in water than in sea ice. In addition to planktonic Ciliophora, assemblages in sea ice included a set of moderately abundant surface-oriented species. Omnivory (feeding on bacteria and unicellular eukaryotes) was the most common feeding type but was not as predominant in sea ice as in water. Sea ice included cytotrophic (feeding on unicellular eukaryotes), bacterivorous and parasitic Ciliophora in addition to the predominant omnivorous Ciliophora. Potentially mixotrophic Ciliophora predominated the water column and heterotrophic Ciliophora sea ice. Our results highlight sea ice as an environment that creates a set of variable habitats, which may be threatened by the diminishing extent of sea ice due to changing climate.


2020 ◽  
Vol 65 (12) ◽  
pp. 2081-2095
Author(s):  
Ana I. Borthagaray ◽  
Franco Teixeira‐de Mello ◽  
Giancarlo Tesitore ◽  
Esteban Ortiz ◽  
Mariana Illarze ◽  
...  

2020 ◽  
Author(s):  
Fujiang Hou ◽  
An Hu ◽  
Shenghua Chang ◽  
Xianjiang Chen

<p>Spatial heterogeneity has been widely used in the study of succession in abandoned croplands worldwide, and it is often accompanied by time heterogeneity. However, the effect of temporal heterogeneity on succession dynamics over decades is not well understood. Here, we used croplands with same history in northwest China that were abandoned in 1998, 1999, and 2000 and continuously monitored vegetation characteristics for ten years. Croplands were left undisturbed throughout the study. Non-metric multidimensional scaling was used to interpret changes in the plant community, and taxonomic and functional diversity measures were compared in three treatment over time. Our results show that the directions of succession in all three croplands were similar, from single superior community (<em>Salsolacollina</em> Pall.) with higher aboveground biomass to multi-superior community (<em>Artemisia capillaris</em> Thunb., <em>Stipa bungeana</em> Trin., <em>Lespedeza davurica</em> (Laxm.) Schindl, Heteropappus altaicus (Willd.) Novopokr) with lower aboveground biomass. Taxonomic and functional diversity increased rapidly in the first 4–6 years, followed by a slow increase, decrease or stabilization. Temporal heterogeneity had no effect on species richness after the 7th year, on the Shannon-Wiener index, species evenness, modified functional attribute diversity, or functional divergence after the 8th year, or functional evenness after 5th year. We conclude that temporal heterogeneity can affect the process of secondary succession but has no effect on the direction of community succession. Our findings provide evidence for using temporal heterogeneity to study succession in abandoned croplands in semi-arid areas. </p>


2019 ◽  
Author(s):  
Federico Morelli ◽  
Yanina

ContextThe negative association between elevation and species richness is a well-recognized pattern in macro-ecology. ObjectivesThe aim of this study was to investigate changes in functional evenness of breeding bird communities along an elevation gradient in Europe. MethodsUsing the bird data from the EBCC Atlas of European Breeding Birds we estimated an index of functional evenness which can be assumed as a measure of the potential resilience of communities.ResultsOur findings confirm the existence of a negative association between elevation and bird species richness in all European eco regions. However, we also explored a novel aspect of this relationship, important for conservation: Our findings provide evidence at large spatial scale of a negative association between the functional evenness (potential community resilience) and elevation, independent of the eco region. We also found that the Natura2000 protected areas covers the territory most in need of protection, those characterized by bird communities with low potential resilience, in hilly and mountainous areas.ConclusionsThese results draw attention to European areas occupied by bird communities characterized by a potential lower capacity to respond to strong ecological changes, and, therefore, potentially more exposed to risks for conservation.


2019 ◽  
Vol 286 (1908) ◽  
pp. 20190745 ◽  
Author(s):  
M. Schumm ◽  
S. M. Edie ◽  
K. S. Collins ◽  
V. Gómez-Bahamón ◽  
K. Supriya ◽  
...  

Functional diversity is an important aspect of biodiversity, but its relationship to species diversity in time and space is poorly understood. Here we compare spatial patterns of functional and taxonomic diversity across marine and terrestrial systems to identify commonalities in their respective ecological and evolutionary drivers. We placed species-level ecological traits into comparable multi-dimensional frameworks for two model systems, marine bivalves and terrestrial birds, and used global species-occurrence data to examine the distribution of functional diversity with latitude and longitude. In both systems, tropical faunas show high total functional richness (FR) but low functional evenness (FE) (i.e. the tropics contain a highly skewed distribution of species among functional groups). Functional groups that persist toward the poles become more uniform in species richness, such that FR declines and FE rises with latitude in both systems. Temperate assemblages are more functionally even than tropical assemblages subsampled to temperate levels of species richness, suggesting that high species richness in the tropics reflects a high degree of ecological specialization within a few functional groups and/or factors that favour high recent speciation or reduced extinction rates in those groups.


Sign in / Sign up

Export Citation Format

Share Document