Hydroxychavicol, a key ingredient of Piper betle induces bacterial cell death by DNA damage and inhibition of cell division

2018 ◽  
Vol 120 ◽  
pp. 62-71 ◽  
Author(s):  
Deepti Singh ◽  
Shwetha Narayanamoorthy ◽  
Sunita Gamre ◽  
Ananda Guha Majumdar ◽  
Manish Goswami ◽  
...  
2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Xin Li ◽  
Jane Kim ◽  
Jiabin Wu ◽  
Alaa’ I Ahamed ◽  
Yinsheng Wang ◽  
...  

Chronic wounds are a major global health problem with the presence of biofilm significantly contributing to wound chronicity. Current treatments are ineffective in resolving biofilm and simultaneously killing the bacteria; therefore, effective biofilm-resolving drugs are needed. We have previously shown that, together with α-tocopherol, N-acetyl-cysteine (NAC) significantly improves the healing of biofilm-containing chronic wounds, in a diabetic mouse model we developed, by causing disappearance of the bacteria and breakdown of the extracellular polymeric substance (EPS). We hypothesize that NAC creates a microenvironment that affects bacterial survival and EPS integrity. To test this hypothesis, we developed an in vitro biofilm system using microbiome taken directly from diabetic mouse chronic wounds. For these studies, we chose mice in which chronic wound microbiome was rich in Pseudomonas aeruginosa (97%). We show that NAC at concentrations with pH < pKa causes bacterial cell death and breakdown of EPS. When used before biofilm is formed, NAC leads to bacterial cell death whereas treatment after the biofilm is established NAC causes biofilm dismantling accompanied by bacterial cell death. Mechanistically, we show that NAC can penetrate the bacterial membrane, increase oxidative stress, and halt protein synthesis. We also show that low pH is important for the actions of NAC and that bacterial death occurs independently of the presence of biofilm. In addition, we show that both the acetyl and carboxylic groups play key roles in NAC functions. The results presented here provide insight into the mechanisms by which NAC dismantles biofilm and how it could be used to treat chronic wounds after debridement (NAC applied at the start of culture) or without debridement (NAC applied when biofilm is already formed). This approach can be taken to develop biofilm from microbiome taken directly from human chronic wounds to test molecules that could be effective for the treatment of specific biofilm compositions.


mBio ◽  
2013 ◽  
Vol 4 (3) ◽  
Author(s):  
Sathish Kumar ◽  
Ilana Kolodkin-Gal ◽  
Hanna Engelberg-Kulka

ABSTRACTEscherichia colimazEFis a toxin-antitoxin stress-induced module mediating cell death. It requires the quorum-sensing signal (QS) “extracellular death factor” (EDF), the penta-peptide NNWNN (EcEDF), enhancing the endoribonucleolytic activity ofE. colitoxin MazF. Here we discovered thatE. coli mazEF-mediated cell death could be triggered by QS peptides from the supernatants (SN) of the Gram-positive bacteriumBacillus subtilisand the Gram-negative bacteriumPseudomonas aeruginosa. In the SN ofB. subtilis, we found one EDF, the hexapeptide RGQQNE, calledBsEDF. In the SN ofP. aeruginosa, we found three EDFs: the nonapeptide INEQTVVTK, calledPaEDF-1, and two hexadecapeptides, VEVSDDGSGGNTSLSQ, calledPaEDF-2, and APKLSDGAAAGYVTKA, calledPaEDF-3. When added to a dilutedE. colicultures, each of these peptides acted as an interspecies EDF that triggeredmazEF-mediated death. Furthermore, though their sequences are very different, each of these EDFs amplified the endoribonucleolytic activity ofE. coliMazF, probably by interacting with different sites onE. coliMazF. Finally, we suggest that EDFs may become the basis for a new class of antibiotics that trigger death from outside the bacterial cells.IMPORTANCEBacteria communicate with one another via quorum-sensing signal (QS) molecules. QS provides a mechanism for bacteria to monitor each other’s presence and to modulate gene expression in response to population density. Previously, we addedE. coliEDF (EcEDF), the peptide NNWNN, to this list of QS molecules. Here we extended the group of QS peptides to several additional different peptides. The new EDFs are produced by two other bacteria,Bacillus subtilisandPseudomonas aeruginosa. Thus, in this study we established a “new family of EDFs.” This family provides the first example of quorum-sensing molecules participating in interspecies bacterial cell death. Furthermore, each of these peptides provides the basis of a new class of antibiotics triggering death by acting from outside the cell.


2015 ◽  
Vol 166 ◽  
pp. 205-210 ◽  
Author(s):  
Xiu-Mei Li ◽  
Xue-Gang Luo ◽  
Nan Wang ◽  
Hao Zhou ◽  
Chuan-Ling Si ◽  
...  

2002 ◽  
Vol 35 (6) ◽  
pp. 1540-1549 ◽  
Author(s):  
Sang Won Lee ◽  
Young--gyu Ko ◽  
SookHee Bang ◽  
Key-Sun Kim ◽  
Sunghoon Kim

2012 ◽  
Vol 46 (5) ◽  
pp. 561-572 ◽  
Author(s):  
Daniel J. Dwyer ◽  
Diogo M. Camacho ◽  
Michael A. Kohanski ◽  
Jarred M. Callura ◽  
James J. Collins

2021 ◽  
Author(s):  
Jorge Zamora-Zaragoza ◽  
Katinka Klap ◽  
Renze Heidstra ◽  
Wenkun Zhou ◽  
Ben Scheres

Living organisms face threats to genome integrity caused by environmental challenges or metabolic errors in proliferating cells. To avoid the spread of mutations, cell division is temporarily arrested while repair mechanisms deal with DNA lesions. Afterwards, cells either resume division or respond to unsuccessful repair by withdrawing from the cell cycle and undergoing cell death. How the success rate of DNA repair connects to the execution of cell death remains incompletely known, particularly in plants. Here we provide evidence that the Arabidopsis thaliana RETINOBLASTOMA-RELATED1 (RBR) protein, shown to play structural and transcriptional functions in the DNA damage response (DDR), coordinates these processes in time by successive interactions through its B-pocket sub-domain. Upon DNA damage induction, RBR forms nuclear foci; but the N849F substitution in the B-pocket, which specifically disrupts binding to LXCXE motif-containing proteins, abolishes RBR focus formation and leads to growth arrest. After RBR focus formation, the stress-responsive gene NAC044 arrests cell division. As RBR is released from nuclear foci, it can be bound by the conserved LXCXE motif in NAC044. RBR-mediated cell survival is inhibited by the interaction with NAC044. Disruption of NAC044-RBR interaction impairs the cell death response but is less important for NAC044 mediated growth arrest. Noteworthy, unlike many RBR interactors, NAC044 binds to RBR independent of RBR phosphorylation. Our findings suggest that the availability of the RBR B-pocket to interact with LXCXE-containing proteins couples the structural DNA repair functions and the transcriptional functions of RBR in the cell death program.


2004 ◽  
Vol 186 (18) ◽  
pp. 6325-6326 ◽  
Author(s):  
Angel Manteca ◽  
Jesus Sanchez

ABSTRACT Several single-domain prokaryotic and eukaryotic cyclophilins have been identified as also being unspecific nucleases with a role in DNA degradation during the lytic processes that accompany bacterial cell death and eukaryotic apoptosis. Evidence is provided here that the supposed nuclease activity of human and bacterial recombinant cyclophilins is due to contamination of the proteins by the host Escherichia coli endonuclease and is not an intrinsic property of these proteins.


Sign in / Sign up

Export Citation Format

Share Document