scholarly journals Novel perspectives on redox signaling in red blood cells and platelets in cardiovascular disease

Author(s):  
Ali Mahdi ◽  
Miriam M. Cortese-Krott ◽  
Malte Kelm ◽  
Nailin Li ◽  
John Pernow
2020 ◽  
Vol 15 (10) ◽  
pp. 2673-2682
Author(s):  
Gaurango Chakrabarty ◽  
Somanathapura K. NaveenKumar ◽  
Sagar Kumar ◽  
Govindasamy Mugesh

2015 ◽  
Vol 78 (9) ◽  
pp. 499-500 ◽  
Author(s):  
Wen-Ling Lee ◽  
Ben-Shian Huang ◽  
Peng-Hui Wang

Author(s):  
Ghadir Alkarithi ◽  
Cédric Duval ◽  
Yu Shi ◽  
Fraser L. Macrae ◽  
Robert A.S. Ariëns

Thrombosis is a major complication of cardiovascular disease, leading to myocardial infarction, acute ischemic stroke (AIS), or venous thromboembolism. Thrombosis occurs when a thrombus forms inside blood vessels disrupting blood flow. Developments in thrombectomy to remove thrombi from vessels have provided new opportunities to study thrombus composition which may help to understand mechanisms of disease and underpin improvements in treatments. We aimed to review thrombus compositions, roles of components in thrombus formation and stability, and methods to investigate thrombi. Also, we summarize studies on thrombus structure obtained from cardiovascular patients and animal models. Thrombi are composed of fibrin, red blood cells, platelets, leukocytes, and neutrophil extracellular traps. These components have been analyzed by several techniques, including scanning electron microscopy, laser scanning confocal microscopy, histochemistry, and immunohistochemistry; however, each technique has advantages and limitations. Thrombi are heterogenous in composition, but overall, thrombi obtained from myocardial infarction are composed of mainly fibrin and other components, including platelets, red blood cells, leukocytes, and cholesterol crystals. Thrombi from patients with acute ischemic stroke are characterized by red blood cell- and platelet-rich regions. Thrombi from patients with venous thromboembolism contain mainly red blood cells and fibrin with some platelets and leukocytes. Thrombus composition from patients with myocardial infarction is influenced by ischemic time. Animal thrombosis models are crucial to gain further mechanistic information about thrombosis and thrombus structure, with thrombi being similar in composition compared with those from patients. Further studies on thrombus composition and function are key to improve treatment and clinical outcome of thrombosis.


Author(s):  
Kosuke Ueda ◽  
Hiroto Washida ◽  
Nakazo Watari

IntroductionHemoglobin crystals in the red blood cells were electronmicroscopically reported by Fawcett in the cat myocardium. In the human, Lessin revealed crystal-containing cells in the periphral blood of hemoglobin C disease patients. We found the hemoglobin crystals and its agglutination in the erythrocytes in the renal cortex of the human renal lithiasis, and these patients had no hematological abnormalities or other diseases out of the renal lithiasis. Hemoglobin crystals in the human erythrocytes were confirmed to be the first case in the kidney.Material and MethodsTen cases of the human renal biopsies were performed on the operations of the seven pyelolithotomies and three ureterolithotomies. The each specimens were primarily fixed in cacodylate buffered 3. 0% glutaraldehyde and post fixed in osmic acid, dehydrated in graded concentrations of ethanol, and then embedded in Epon 812. Ultrathin sections, cut on LKB microtome, were doubly stained with uranyl acetate and lead citrate.


Author(s):  
John A. Trotter

Hemoglobin is the specific protein of red blood cells. Those cells in which hemoglobin synthesis is initiated are the earliest cells that can presently be considered to be committed to erythropoiesis. In order to identify such early cells electron microscopically, we have made use of the peroxidatic activity of hemoglobin by reacting the marrow of erythropoietically stimulated guinea pigs with diaminobenzidine (DAB). The reaction product appeared as a diffuse and amorphous electron opacity throughout the cytoplasm of reactive cells. The detection of small density increases of such a diffuse nature required an analytical method more sensitive and reliable than the visual examination of micrographs. A procedure was therefore devised for the evaluation of micrographs (negatives) with a densitometer (Weston Photographic Analyzer).


Author(s):  
Victor Tsutsumi ◽  
Adolfo Martinez-Palomo ◽  
Kyuichi Tanikawa

The protozoan parasite Entamoeba histolytica is the causative agent of amebiasis in man. The trophozoite or motile form is a highly dynamic and pleomorphic cell with a great capacity to destroy tissues. Moreover, the parasite has the singular ability to phagocytize a variety of different live or death cells. Phagocytosis of red blood cells by E. histolytica trophozoites is a complex phenomenon related with amebic pathogenicity and nutrition.


Sign in / Sign up

Export Citation Format

Share Document