Hemolysin EthA in Edwardsiella tarda is essential for fish invasion in vivo and in vitro and regulated by two-component system EsrA–EsrB and nucleoid protein HhaEt

2010 ◽  
Vol 29 (6) ◽  
pp. 1082-1091 ◽  
Author(s):  
Xin Wang ◽  
Qiyao Wang ◽  
Jingfan Xiao ◽  
Qin Liu ◽  
Haizhen Wu ◽  
...  
mBio ◽  
2017 ◽  
Vol 8 (3) ◽  
Author(s):  
Rong Gao ◽  
Ann M. Stock

ABSTRACT Cells rely on accurate control of signaling systems to adapt to environmental perturbations. System deactivation upon stimulus removal is as important as activation of signaling pathways. The two-component system (TCS) is one of the major bacterial signaling schemes. In many TCSs, phosphatase activity of the histidine kinase (HK) is believed to play an essential role in shutting off the pathway and resetting the system to the prestimulus state. Two basic challenges are to understand the dynamic behavior of system deactivation and to quantitatively evaluate the role of phosphatase activity under natural cellular conditions. Here we report a kinetic analysis of the response to shutting off the archetype Escherichia coli PhoR-PhoB TCS pathway using both transcription reporter assays and in vivo phosphorylation analyses. Upon removal of the stimulus, the pathway is shut off by rapid dephosphorylation of the PhoB response regulator (RR) while PhoB-regulated gene products gradually reset to prestimulus levels through growth dilution. We developed an approach combining experimentation and modeling to assess in vivo kinetic parameters of the phosphatase activity with kinetic data from multiple phosphatase-diminished mutants. This enabled an estimation of the PhoR phosphatase activity in vivo , which is much stronger than the phosphatase activity of PhoR cytoplasmic domains analyzed in vitro . We quantitatively modeled how strong the phosphatase activity needs to be to suppress nonspecific phosphorylation in TCSs and discovered that strong phosphatase activity of PhoR is required for cross-phosphorylation suppression. IMPORTANCE Activation of TCSs has been extensively studied; however, the kinetics of shutting off TCS pathways is not well characterized. We present comprehensive analyses of the shutoff response for the PhoR-PhoB system that reveal the impact of phosphatase activity on shutoff kinetics. This allows development of a quantitative framework not only to characterize the phosphatase activity in the natural cellular environment but also to understand the requirement for specific strengths of phosphatase activity to suppress nonspecific phosphorylation. Our model suggests that the ratio of the phosphatase rate to the nonspecific phosphorylation rate correlates with TCS expression levels and the ratio of the RR to HK, which may contribute to the great diversity of enzyme levels and activities observed in different TCSs.


2006 ◽  
Vol 188 (6) ◽  
pp. 2134-2143 ◽  
Author(s):  
Hongjun He ◽  
Raymond Hovey ◽  
Jason Kane ◽  
Vineet Singh ◽  
Thomas C. Zahrt

ABSTRACT The genetic mechanisms mediating the adaptation of Mycobacterium tuberculosis within the host are poorly understood. The best-characterized regulatory systems in this organism include sigma factors and two-component signal transduction systems. mprAB is a two-component system required by M. tuberculosis for growth in vivo during the persistent stage of infection. In this report, we demonstrate that MprAB is stress responsive and regulates the expression of numerous stress-responsive genes in M. tuberculosis. With DNA microarrays and quantitative real-time reverse transcription-PCR, genes regulated by MprA in M. tuberculosis that included two stress-responsive sigma factors were identified. Response regulator MprA bound to conserved motifs in the upstream regions of both sigB and sigE in vitro and regulated the in vivo expression of sigB and sigE in M. tuberculosis. In addition, mprA itself was induced following exposure to stress, establishing a direct role for this regulatory system in stress response pathways of M. tuberculosis. Induction of mprA and sigE by MprA in response to stress was mediated through the cognate sensor kinase MprB and required expression of the extracytoplasmic loop domain. These results provide the first evidence that recognition of and adaptation to specific stress in M. tuberculosis are mediated through activation of a two-component signal transduction system that directly regulates the expression of stress-responsive determinants.


2004 ◽  
Vol 54 (5) ◽  
pp. 1269-1286 ◽  
Author(s):  
Joanna K. MacKichan ◽  
Erin C. Gaynor ◽  
Christopher Chang ◽  
Shaun Cawthraw ◽  
Diane G. Newell ◽  
...  

2019 ◽  
Vol 202 (4) ◽  
Author(s):  
Arkajyoti Dutta ◽  
Paulami Rudra ◽  
Suman Kumar Banik ◽  
Jayanta Mukhopadhyay

ABSTRACT Variation in the concentration of biological components is inescapable for any cell. Robustness in any biological circuit acts as a cushion against such variation and enables the cells to produce homogeneous output despite the fluctuation. The two-component system (TCS) with a bifunctional sensor kinase (that possesses both kinase and phosphatase activities) is proposed to be a robust circuit. Few theoretical models explain the robustness of a TCS, although the criteria and extent of robustness by these models differ. Here, we provide experimental evidence to validate the extent of the robustness of a TCS signaling pathway. We have designed a synthetic circuit in Escherichia coli using a representative TCS of Mycobacterium tuberculosis, MprAB, and monitored the in vivo output signal by systematically varying the concentration of either of the components or both. We observed that the output of the TCS is robust if the concentration of MprA is above a threshold value. This observation is further substantiated by two in vitro assays, in which we estimated the phosphorylated MprA pool or MprA-dependent transcription yield by varying either of the components of the TCS. This synthetic circuit could be used as a model system to analyze the relationship among different components of gene regulatory networks. IMPORTANCE Robustness in essential biological circuits is an important feature of the living organism. A few pieces of evidence support the existence of robustness in vivo in the two-component system (TCS) with a bifunctional sensor kinase (SK). The assays were done under physiological conditions in which the SK was much lower than the response regulator (RR). Here, using a synthetic circuit, we varied the concentrations of the SK and RR of a representative TCS to monitor output robustness in vivo. In vitro assays were also performed under conditions where the concentration of the SK was greater than that of the RR. Our results demonstrate the extent of output robustness in the TCS signaling pathway with respect to the concentrations of the two components.


2006 ◽  
Vol 74 (8) ◽  
pp. 4900-4909 ◽  
Author(s):  
Christopher D. Herren ◽  
Arindam Mitra ◽  
Senthil Kumar Palaniyandi ◽  
Adam Coleman ◽  
Subbiah Elankumaran ◽  
...  

ABSTRACT The BarA-UvrY two-component system (TCS) in Escherichia coli is known to regulate a number of phenotypic traits. Both in vitro and in vivo assays, including the chicken embryo lethality assay, showed that this TCS regulates virulence in avian pathogenic E. coli (APEC) serotype O78:K80:H9. A number of virulence determinants, such as the abilities to adhere, invade, persist within tissues, survive within macrophages, and resist bactericidal effects of serum complement, were compromised in mutants lacking either the barA or uvrY gene. The reduced virulence was attributed to down regulation of type 1 and Pap fimbriae, reduced exopolysaccharide production, and increased susceptibility to oxidative stress. Our results indicate that BarA-UvrY regulates virulence properties in APEC and that the chicken embryo lethality assay can be used as a surrogate model to determine virulence determinants and their regulation in APEC strains.


Microbiology ◽  
2003 ◽  
Vol 149 (9) ◽  
pp. 2331-2343 ◽  
Author(s):  
Thierry Doan ◽  
Pascale Servant ◽  
Shigeo Tojo ◽  
Hirotake Yamaguchi ◽  
Guillaume Lerondel ◽  
...  

A transcriptome comparison of a wild-type Bacillus subtilis strain growing under glycolytic or gluconeogenic conditions was performed. In particular, it revealed that the ywkA gene, one of the four paralogues putatively encoding a malic enzyme, was more transcribed during gluconeogenesis. Using a lacZ reporter fusion to the ywkA promoter, it was shown that ywkA was specifically induced by external malate and not subject to glucose catabolite repression. Northern analysis confirmed this expression pattern and demonstrated that ywkA is cotranscribed with the downstream ywkB gene. The ywkA gene product was purified and biochemical studies demonstrated its malic enzyme activity, which was 10-fold higher with NAD than with NADP (k cat/K m 102 and 10 s−1 mM−1, respectively). However, physiological tests with single and multiple mutant strains affected in ywkA and/or in ywkA paralogues showed that ywkA does not contribute to efficient utilization of malate for growth. Transposon mutagenesis allowed the identification of the uncharacterized YufL/YufM two-component system as being responsible for the control of ywkA expression. Genetic analysis and in vitro studies with purified YufM protein showed that YufM binds just upstream of ywkA promoter and activates ywkA transcription in response to the presence of malate in the extracellular medium, transmitted by YufL. ywkA and yufL/yufM could thus be renamed maeA for malic enzyme and malK/malR for malate kinase sensor/malate response regulator, respectively.


Microbiology ◽  
2005 ◽  
Vol 151 (11) ◽  
pp. 3603-3614 ◽  
Author(s):  
Darío Ortiz de Orué Lucana ◽  
Peijian Zou ◽  
Marc Nierhaus ◽  
Hildgund Schrempf

The Gram-positive soil bacterium and cellulose degrader Streptomyces reticuli synthesizes the mycelium-associated enzyme CpeB, which displays haem-dependent catalase and peroxidase activity, as well as haem-independent manganese-peroxidase activity. The expression of the furS–cpeB operon depends on the redox regulator FurS and the presence of the haem-binding protein HbpS. Upstream of hbpS, the neighbouring senS and senR genes were identified. SenS is a sensor histidine kinase with five predicted N-terminally located transmembrane domains. SenR is the corresponding response regulator with a C-terminal DNA-binding motif. Comparative transcriptional and biochemical studies with a designed S. reticuli senS/senR chromosomal disruption mutant and a set of constructed Streptomyces lividans transformants showed that the presence of the novel two-component system SenS/SenR negatively modulates the expression of the furS–cpeB operon and the hbpS gene. The presence of SenS/SenR enhances considerably the resistance of S. reticuli to haemin and the redox-cycling compound plumbagin, suggesting that this system could participate directly or indirectly in the sensing of redox changes. Epitope-tagged HbpS (obtained from an Escherichia coli transformant) as well as the native S. reticuli HbpS interact in vitro specifically with the purified SenS fusion protein. On the basis of these findings, together with data deduced from the S. reticuli hbpS mutant strain, HbpS is suggested to act as an accessory protein that communicates with the sensor protein to modulate the corresponding regulatory cascade. Interestingly, close and distant homologues, respectively, of the SenS/SenR system are encoded within the Streptomyces coelicolor A3(2) and Streptomyces avermitilis genomes, but not within other known bacterial genomes. Hence the SenS/SenR system appears to be confined to streptomycetes.


mBio ◽  
2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Sarah B. Namugenyi ◽  
Alisha M. Aagesen ◽  
Sarah R. Elliott ◽  
Anna D. Tischler

ABSTRACT The Mycobacterium tuberculosis phosphate-specific transport (Pst) system controls gene expression in response to phosphate availability by inhibiting the activation of the SenX3-RegX3 two-component system under phosphate-rich conditions, but the mechanism of communication between these systems is unknown. In Escherichia coli, inhibition of the two-component system PhoR-PhoB under phosphate-rich conditions requires both the Pst system and PhoU, a putative adaptor protein. E. coli PhoU is also involved in the formation of persisters, a subpopulation of phenotypically antibiotic-tolerant bacteria. M. tuberculosis encodes two PhoU orthologs, PhoY1 and PhoY2. We generated phoY single- and double-deletion mutants and examined the expression of RegX3-regulated genes by quantitative reverse transcription-PCR (qRT-PCR). Gene expression was increased only in the ΔphoY1 ΔphoY2 double mutant and could be restored to the wild-type level by complementation with either phoY1 or phoY2 or by deletion of regX3. These data suggest that the PhoY proteins function redundantly to inhibit SenX3-RegX3 activation. We analyzed the frequencies of antibiotic-tolerant persister variants in the phoY mutants using several antibiotic combinations. Persister frequency was decreased at least 40-fold in the ΔphoY1 ΔphoY2 mutant compared to the frequency in the wild type, and this phenotype was RegX3 dependent. A ΔpstA1 mutant lacking a Pst system transmembrane component exhibited a similar RegX3-dependent decrease in persister frequency. In aerosol-infected mice, the ΔphoY1 ΔphoY2 and ΔpstA1 mutants were more susceptible to treatment with rifampin but not isoniazid. Our data demonstrate that disrupting phosphate sensing mediated by the PhoY proteins and the Pst system enhances the susceptibility of M. tuberculosis to antibiotics both in vitro and during infection. IMPORTANCE Persister variants, subpopulations of bacteria that are phenotypically antibiotic tolerant, contribute to the lengthy treatment times required to cure Mycobacterium tuberculosis infection, but the molecular mechanisms governing their formation and maintenance are poorly characterized. Here, we demonstrate that a phosphate-sensing signal transduction system, comprising the Pst phosphate transporter, the two-component system SenX3-RegX3, and functionally redundant PhoY proteins that mediate signaling between Pst and SenX3-RegX3, influences persister formation. Activation of RegX3 by deletion of the phoY genes or a Pst system component resulted in decreased persister formation in vitro. Activated RegX3 also limited persister formation during growth under phosphate-limiting conditions. Importantly, increased susceptibility to the front-line drug rifampin was also observed in a mouse infection model. Thus, the M. tuberculosis phosphate-sensing signal transduction system contributes to antibiotic tolerance and is a potential target for the development of novel therapeutics that may shorten the duration of tuberculosis treatment. IMPORTANCE Persister variants, subpopulations of bacteria that are phenotypically antibiotic tolerant, contribute to the lengthy treatment times required to cure Mycobacterium tuberculosis infection, but the molecular mechanisms governing their formation and maintenance are poorly characterized. Here, we demonstrate that a phosphate-sensing signal transduction system, comprising the Pst phosphate transporter, the two-component system SenX3-RegX3, and functionally redundant PhoY proteins that mediate signaling between Pst and SenX3-RegX3, influences persister formation. Activation of RegX3 by deletion of the phoY genes or a Pst system component resulted in decreased persister formation in vitro. Activated RegX3 also limited persister formation during growth under phosphate-limiting conditions. Importantly, increased susceptibility to the front-line drug rifampin was also observed in a mouse infection model. Thus, the M. tuberculosis phosphate-sensing signal transduction system contributes to antibiotic tolerance and is a potential target for the development of novel therapeutics that may shorten the duration of tuberculosis treatment.


Sign in / Sign up

Export Citation Format

Share Document