synthetic circuit
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 16)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sant Kumar ◽  
Marc Rullan ◽  
Mustafa Khammash

AbstractThe design and implementation of synthetic circuits that operate robustly in the cellular context is fundamental for the advancement of synthetic biology. However, their practical implementation presents challenges due to low predictability of synthetic circuit design and time-intensive troubleshooting. Here, we present the Cyberloop, a testing framework to accelerate the design process and implementation of biomolecular controllers. Cellular fluorescence measurements are sent in real-time to a computer simulating candidate stochastic controllers, which in turn compute the control inputs and feed them back to the controlled cells via light stimulation. Applying this framework to yeast cells engineered with optogenetic tools, we examine and characterize different biomolecular controllers, test the impact of non-ideal circuit behaviors such as dilution on their operation, and qualitatively demonstrate improvements in controller function with certain network modifications. From this analysis, we derive conditions for desirable biomolecular controller performance, thereby avoiding pitfalls during its biological implementation.


Author(s):  
Jiang He ◽  
Lior Nissim ◽  
Ava P. Soleimany ◽  
Adina Binder-Nissim ◽  
Heather E. Fleming ◽  
...  

2021 ◽  
Author(s):  
François-Xavier Lehr ◽  
Alina Kuzembayeva ◽  
Megan E. Bailey ◽  
Werner Kleindienst ◽  
Johannes Kabisch ◽  
...  

AbstractCell-free systems have become a compelling choice for the prototyping of synthetic circuits. Many robust protocols for preparing cell-free systems are now available along with toolboxes designed for a variety of applications. Thus far the production of cell-free extracts has often been decoupled from the production of functionalized proteins. Here, we leveraged the most recently published protocol for E. coli-based cell extracts with the endogenous production of two CRISPR-associated proteins, Csy4 and dCas9. We found pre-expression did not affect the resulting extract performance, and the final concentrations of the endonucleases matched the level required for synthetic circuit prototyping. We demonstrated the benefits and versatility of dCas9 and Csy4 through the use of RNA circuitry based on a combination of single guide RNAs, small transcriptional activator RNAs and toehold switches. For instance, we show that Csy4 processing increased fourfold the dynamic range of a previously published AND-logic gate. Additionally, blending the CRISPR-enhanced extracts enabled us to reduce leakage in a multiple inputs gate, and to extend the type of Boolean functions available for RNA-based circuits, such as NAND-logic. Finally, the use of dual transcriptional and translational reporters for the engineering of RNA-based circuits, allowed us to gain better insight into their underlying mechanisms. We hope this work will facilitate the adoption of advanced processing tools for RNA-based circuit prototyping in a cell-free environment.


2021 ◽  
Author(s):  
Ronghui Zhu ◽  
Jesus M. del Rio-Salgado ◽  
Jordi Garcia-Ojalvo ◽  
Michael B. Elowitz

AbstractIn multicellular organisms, gene regulatory circuits generate thousands of molecularly distinct, mitotically heritable states, through the property of multistability. Designing synthetic multistable circuits would provide insight into natural cell fate control circuit architectures and allow engineering of multicellular programs that require interactions among cells in distinct states. Here we introduce MultiFate, a naturally-inspired, synthetic circuit that supports long-term, controllable, and expandable multistability in mammalian cells. MultiFate uses engineered zinc finger transcription factors that transcriptionally self-activate as homodimers and mutually inhibit one another through heterodimerization. Using model-based design, we engineered MultiFate circuits that generate up to seven states, each stable for at least 18 days. MultiFate permits controlled state-switching and modulation of state stability through external inputs, and can be easily expanded with additional transcription factors. Together, these results provide a foundation for engineering multicellular behaviors in mammalian cells.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alain R. Bonny ◽  
João Pedro Fonseca ◽  
Jesslyn E. Park ◽  
Hana El-Samad

AbstractStochastic fluctuations at the transcriptional level contribute to isogenic cell-to-cell heterogeneity in mammalian cell populations. However, we still have no clear understanding of the repercussions of this heterogeneity, given the lack of tools to independently control mean expression and variability of a gene. Here, we engineer a synthetic circuit to modulate mean expression and heterogeneity of transgenes and endogenous human genes. The circuit, a Tunable Noise Rheostat (TuNR), consists of a transcriptional cascade of two inducible transcriptional activators, where the output mean and variance can be modulated by two orthogonal small molecule inputs. In this fashion, different combinations of the inputs can achieve the same mean but with different population variability. With TuNR, we achieve low basal expression, over 1000-fold expression of a transgene product, and up to 7-fold induction of the endogenous gene NGFR. Importantly, for the same mean expression level, we are able to establish varying degrees of heterogeneity in expression within an isogenic population, thereby decoupling gene expression noise from its mean. TuNR is therefore a modular tool that can be used in mammalian cells to enable direct interrogation of the implications of cell-to-cell variability.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Patricia Calero ◽  
Daniel C. Volke ◽  
Phillip T. Lowe ◽  
Charlotte H. Gotfredsen ◽  
David O’Hagan ◽  
...  

Abstract Fluorine is a key element in the synthesis of molecules broadly used in medicine, agriculture and materials. Addition of fluorine to organic structures represents a unique strategy for tuning molecular properties, yet this atom is rarely found in Nature and approaches to integrate fluorometabolites into the biochemistry of living cells are scarce. In this work, synthetic gene circuits for organofluorine biosynthesis are implemented in the platform bacterium Pseudomonas putida. By harnessing fluoride-responsive riboswitches and the orthogonal T7 RNA polymerase, biochemical reactions needed for in vivo biofluorination are wired to the presence of fluoride (i.e. circumventing the need of feeding expensive additives). Biosynthesis of fluoronucleotides and fluorosugars in engineered P. putida is demonstrated with mineral fluoride both as only fluorine source (i.e. substrate of the pathway) and as inducer of the synthetic circuit. This approach expands the chemical landscape of cell factories by providing alternative biosynthetic strategies towards fluorinated building-blocks.


2020 ◽  
Vol 48 (5) ◽  
pp. 1979-1993
Author(s):  
Javier Santos-Moreno ◽  
Yolanda Schaerli

Synthetic gene circuits allow us to govern cell behavior in a programmable manner, which is central to almost any application aiming to harness engineered living cells for user-defined tasks. Transcription factors (TFs) constitute the ‘classic’ tool for synthetic circuit construction but some of their inherent constraints, such as insufficient modularity, orthogonality and programmability, limit progress in such forward-engineering endeavors. Here we review how CRISPR (clustered regularly interspaced short palindromic repeats) technology offers new and powerful possibilities for synthetic circuit design. CRISPR systems offer superior characteristics over TFs in many aspects relevant to a modular, predictable and standardized circuit design. Thus, the choice of CRISPR technology as a framework for synthetic circuit design constitutes a valid alternative to complement or replace TFs in synthetic circuits and promises the realization of more ambitious designs.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Timothy Frei ◽  
Federica Cella ◽  
Fabiana Tedeschi ◽  
Joaquín Gutiérrez ◽  
Guy-Bart Stan ◽  
...  

Abstract Despite recent advances in circuit engineering, the design of genetic networks in mammalian cells is still painstakingly slow and fraught with inexplicable failures. Here, we demonstrate that transiently expressed genes in mammalian cells compete for limited transcriptional and translational resources. This competition results in the coupling of otherwise independent exogenous and endogenous genes, creating a divergence between intended and actual function. Guided by a resource-aware mathematical model, we identify and engineer natural and synthetic miRNA-based incoherent feedforward loop (iFFL) circuits that mitigate gene expression burden. The implementation of these circuits features the use of endogenous miRNAs as elementary components of the engineered iFFL device, a versatile hybrid design that allows burden mitigation to be achieved across different cell-lines with minimal resource requirements. This study establishes the foundations for context-aware prediction and improvement of in vivo synthetic circuit performance, paving the way towards more rational synthetic construct design in mammalian cells.


2020 ◽  
Author(s):  
Alain R. Bonny ◽  
João Pedro Fonseca ◽  
Jesslyn E. Park ◽  
Hana El-Samad

AbstractStochastic fluctuations at the transcriptional level contribute to isogenic cell-to-cell heterogeneity in mammalian cell populations. However, we still have no clear understanding of the repercussions of this heterogeneity, given the lack of tools to independently control mean expression and variability of a gene. Here, we engineered a synthetic circuit to independently modulate mean expression and heterogeneity of transgenes and endogenous human genes. The circuit, a Tunable Noise Rheostat (TuNR), consists of a transcriptional cascade of two inducible transcriptional activators, where the output mean and variance can be modulated by two orthogonal small molecule inputs. In this fashion, different combinations of the inputs can achieve the same mean but with different population variability. With TuNR, we achieve low basal expression, over 1000-fold expression of a transgene product, and up to 7-fold induction of the endogenous gene NGFR. Importantly, for the same mean expression level, we are able to establish varying degrees of heterogeneity in expression within an isogenic population, thereby decoupling gene expression noise from its mean. TuNR is therefore a modular tool that can be used in mammalian cells to enable direct interrogation of the implications of cell-to-cell variability.


2020 ◽  
Author(s):  
Michaëlle N. Mayalu ◽  
Richard M. Murray

SummaryWe have developed a mathematical framework to analyze the cooperative control of cell population homeostasis via paradoxical signaling in synthetic contexts. Paradoxical signaling functions through quorum sensing (where cells produce and release a chemical signal as a function of cell density). Precisely, the same quorum sensing signal provides both positive (proliferation) and negative (death) feedback in different signal concentration regimes. As a consequence, the relationship between intercellular quorum sensing signal concentration and net growth rate (cell proliferation minus death rates) can be non-monotonic. This relationship is a condition for robustness to certain cell mutational overgrowths and allows for increased stability in the presence of environmental perturbations. Here, we explore stability and robustness of a conceptualized synthetic circuit. Furthermore, we asses possible design principles that could exist among a subset of paradoxical circuit implementations. This analysis sparks the development a bio-molecular control theory to identify ideal underlying characteristics for paradoxical signaling control systems.


Sign in / Sign up

Export Citation Format

Share Document