scholarly journals Promiscuous T cell epitopes boosts specific IgM immune response against a P0 peptide antigen from sea lice in different teleost species

2019 ◽  
Vol 92 ◽  
pp. 322-330 ◽  
Author(s):  
Yeny Leal ◽  
Janet Velazquez ◽  
Liz Hernandez ◽  
Jaya Kumari Swain ◽  
Alianet Rodríguez Rodríguez ◽  
...  
Author(s):  
Alba Grifoni ◽  
John Sidney ◽  
Randi Vita ◽  
Bjoern Peters ◽  
Shane Crotty ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3175-3175
Author(s):  
Jonathan Skupsky ◽  
Ai-Hong Allan Zhang ◽  
David W. Scott

Abstract Abstract 3175 Poster Board III-115 Administration of human Factor VIII to hemophilia A (FVIII-/-) mice is a useful small animal model to study the immune response in patients given therapeutic FVIII. These mice manifest a robust, T-cell dependent, antibody response to exogenous FVIII treatment even when encountered through traditionally tolerogenic routes, whereas a different foreign protein like ovalbumin (OVA) is much less immunogenic by these routes. Interestingly, administration of FVIII with OVA led to an immune response to both proteins, suggesting that the function of FVIII in the clotting cascade led to additional “danger” signals to co-administered proteins. Thus, we propose that FVIII is particularly immunogenic because of its function in the coagulation cascade that leads to thrombin formation. We showed that native FVIII is poorly immunogenic when it cannot activate downstream coagulation factors. Thus, heat-inactivated FVIII is poorly immunogenic despite containing normal T-cell epitopes. Importantly, native FVIII is less immunogenic in mice treated with warfarin (which blocks vitamin K-dependent enzymes) or with the direct thrombin-inhibitor, hirudin. Based on the hypothesis that thrombin generation is necessary for the immunogenicity and formation of inhibitors to FVIII, we wished to uncouple this immune response from the disease. When hemostatically normal BALB/c mice were injected directly with thrombin and OVA, they formed increased immune responses to OVA compared to mice given OVA alone. Thus, a likely mechanism is that FVIII treatment initiates a thrombin burst, which we propose is an immunogenic “danger” signal, leading indirectly to dendritic cell activation and promotion of an immune response. (Supported by NIH RO1 HL061883, NIH T32 HL007698, and AHA Fellowship 0815219E) Disclosures No relevant conflicts of interest to declare.


2003 ◽  
Vol 77 (20) ◽  
pp. 11220-11231 ◽  
Author(s):  
Hanne Gahéry-Ségard ◽  
Gilles Pialoux ◽  
Suzanne Figueiredo ◽  
Céline Igéa ◽  
Mathieu Surenaud ◽  
...  

ABSTRACT We studied the effect of booster injections and the long-term immune response after injections of an anti-human immunodeficiency virus type 1 (HIV-1) lipopeptide vaccine. This vaccine was injected alone or with QS21 adjuvant to 28 HIV-uninfected volunteers. One month later, after a fourth injection of the vaccine, B- and T-cell anti-HIV responses were detected in >85% of the vaccinated volunteers. One year after this injection, a long-term immune response was observed in >50% of the volunteers. At this point, a positive QS21 effect was observed only in the sustained B-cell and CD4+-T-cell responses. To better characterize the CD8+-T-cell response, we used a gamma interferon enzyme-linked immunospot method and a bank of 59 HIV-1 epitopes. For the six most common HLA molecules (HLA-A2, -A3, -A11, -A24, -B7 superfamily, and -B8), an average of 10 (range, 3 to 15) HIV-1 epitopes were tested. CD8+-T-cell responses were evaluated according to the HLA class I molecules of the volunteers. Each assessment was based on 18 HIV-1 epitopes in average. We showed that 31 HIV-1 epitopes elicited specific CD8+-T-cell responses after vaccination. The most frequently recognized peptides were Nef 68-76 (-B7), Nef 71-79 (-B7), Nef 84-92 (-A11), Nef 135-143 (-B7), Nef 136-145 (-A2), Nef 137-145 (-A2), Gag 259-267 (-B8), Gag 260-268 (-A2), Gag 267-274 (-A2), Gag 267-277 (-B7), and Gag 276-283 (A24). We found that CD8+-T-cell epitopes were induced at a higher number after a fourth injection (P < 0.05 compared to three injections), which indicates an increase in the breadth of HIV CD8+-T-cell epitope recognition after the boost.


2018 ◽  
Author(s):  
Dina Schneidman-Duhovny ◽  
Natalia Khuri ◽  
Guang Qiang Dong ◽  
Michael B. Winter ◽  
Eric Shifrut ◽  
...  

AbstractAccurate predictions of T-cell epitopes would be useful for designing vaccines, immunotherapies for cancer and autoimmune diseases, and improved protein therapies. The humoral immune response involves uptake of antigens by antigen presenting cells (APCs), APC processing and presentation of peptides on MHC class II (pMHCII), and T-cell receptor (TCR) recognition of pMHCII complexes. Most in silico methods predict only peptide-MHCII binding, resulting in significant over-prediction of CD4 T-cell epitopes. We present a method, ITCell, for prediction of T-cell epitopes within an input protein antigen sequence for given MHCII and TCR sequences. The method integrates information about three stages of the immune response pathway: antigen cleavage, MHCII presentation, and TCR recognition. First, antigen cleavage sites are predicted based on the cleavage profiles of cathepsins S, B, and H. Second, for each 12-mer peptide in the antigen sequence we predict whether it will bind to a given MHCII, based on the scores of modeled peptide-MHCII complexes. Third, we predict whether or not any of the top scoring peptide-MHCII complexes can bind to a given TCR, based on the scores of modeled ternary peptide-MHCII-TCR complexes and the distribution of predicted cleavage sites. Our benchmarks consist of epitope predictions generated by this algorithm, checked against 20 peptide-MHCII-TCR crystal structures, as well as epitope predictions for four peptide-MHCII-TCR complexes with known epitopes and TCR sequences but without crystal structures. ITCell successfully identified the correct epitopes as one of the 20 top scoring peptides for 22 of 24 benchmark cases. To validate the method using a clinically relevant application, we utilized five factor VIII-specific TCR sequences from hemophilia A subjects who developed an immune response to factor VIII replacement therapy. The known HLA-DR1-restricted factor VIII epitope was among the six top-scoring factor VIII peptides predicted by ITCall to bind HLA-DR1 and all five TCRs. Our integrative approach is more accurate than current single-stage epitope prediction algorithms applied to the same benchmarks. It is freely available as a web server (http://salilab.org/itcell).Author summaryKnowledge of T-cell epitopes is useful for designing vaccines, improving cancer immunotherapy, studying autoimmune diseases, and engineering protein replacement therapies. Unfortunately, experimental methods for identification of T-cell epitopes are slow, expensive, and not always applicable. Thus, a more accurate computational method for prediction of T-cell epitopes needs to be developed. While the T-cell response to extracellular antigens proceeds through multiple stages, current computational methods rely only on the prediction of peptide binding affinity to an MHCII receptor on antigen presenting cells, resulting in a relatively high number of false-positive predictions of T-cell epitopes within protein antigens. We developed an integrative approach to predict T-cell epitopes that computationally combines information from three stages of the humoral immune response pathway: antigen cleavage, MHCII presentation, and TCR recognition, resulting in an increased accuracy of epitope predictions. This method was applied to predict epitopes within blood coagulation factor VIII (FVIII) that were recognized by TCRs from hemophilia A subjects who developed an anti-FVIII antibody response. The correct epitope was predicted after modeling all possible 12-mer FVIII peptides bound in ternary complexes with the relevant MHCII (HLA-DR1) and each of five experimentally determined FVIII-specific TCR sequences.


2018 ◽  
Author(s):  
Jonathan Powlson ◽  
Daniel Wright ◽  
Antra Zeltina ◽  
Mark Giza ◽  
Morten Nielsen ◽  
...  

Ebolavirus is a pathogen capable of causing highly lethal haemorrhagic fever in humans. The envelope-displayed viral glycoprotein is the primary target of humoral immunity induced by both natural exposure and vaccination. The epitopes targeted by B cells have been thoroughly characterised by functional and structural analyses of the glycoprotein, GP, yet there is a paucity of information regarding the cellular immune response to Ebolavirus. To date, no T cell epitopes in the glycoprotein have been characterised in detail in humans. A recent Phase I clinical trial of a heterologous prime-boost vaccination regime with viral vectors encoding filovirus antigens elicited strong humoral and T cell responses in vaccinees. Using samples from this trial, the most frequently recognised peptide pools were studied in more detail to identify the minimal epitopes recognised by antigen-specific T cells and associated HLA-restrictions. Using IFNγ ELISPOT and flow cytometry, we characterised nine highly immunogenic T cell epitopes located on both the GP1 and GP2 subunits of the Ebolavirus GP. Epitope mapping revealed the location of these epitopes as presented on the mature virion. HLA-typing on all participants, combined with in silico epitope analysis, determined the likely MHC class I restriction elements. Thirteen HLA-A and -B alleles were predicted to present the identified epitopes, suggesting promiscuous recognition and induction of a broad immune response. The glycoprotein of Ebolavirus is highly immunogenic, inducing both CD4+ and CD8+ T cell responses and we have shown here for the first time that these responses are associated with multiple HLA types. Delivery of this antigen using a heterologous prime-boost approach with ChAd3 and MVA is likely to be highly immunogenic in genetically diverse human populations, due to the induction of responses against multiple immunodominant epitopes.


2013 ◽  
Vol 43 (9) ◽  
pp. 739-752 ◽  
Author(s):  
Manuel Rodriguez-Valle ◽  
Paula Moolhuijzen ◽  
Emily K. Piper ◽  
Olivia Weiss ◽  
Megan Vance ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1220-1220
Author(s):  
Jonathan Skupsky ◽  
Ai-Hong Zhang ◽  
David W. Scott

Abstract It is well established that mice which do not produce endogenous factor VIII (fVIII−/−) can manifest a robust immune response to exogenous fVIII treatments. They form B-cell and T-cell responses even when they encounter fVIII through traditionally tolerogenic routes (e.g., intravenous or intraperitoneal). In the fVIII−/− mouse, repeated administration of recombinant human fVIII has emerged as a useful model for studying the physiologic response in hemophilic patients iatrogenically immunized to therapeutic factor VIII treatments. While environmental factors likely offer some co-stimulatory signals, nonetheless, the ability to respond effectively in the absence of extrinsic adjuvant begs the questions of what is the “danger signal” required for immune responsiveness to fVIII? We have previously shown that when factor VIII is heat inactivated (56°, 30′), it completely losses function and much of its immunogenicity (Skupsky and Scott, Blood110: 2685 Abstract, 2007). Heated fVIII lacks several of its B-cell epitopes (we did not find a subsequent response to neo-epitopes), but retains its T-cell epitopes. We concluded that fVIII’s immunogenicity is inherently tied to its function. To explore this topic further, we have immunized hemophilic mice with rfVIII and compared the response to mice treated with both rfVIII and Hirudin. Hirudin is the reactive agent found in medicinal leech saliva and its anti-coagulant activity is based on its ability to inhibit thrombin. We found that T cell responses to rfVIII in mice protected with Hirudin are significantly reduced (p&lt;0.05) and the anti-fVIII antibody concentration has decreased by 25%. As a control, we injected a third group of mice i.v. with an equivalent amount of another foreign protein, ovalbumin (OVA) in PBS. As expected, the mice did not respond to this historically tolerogenic treatment. Interestingly, when mice were injected simultaneously with rfVIII and OVA, they did form a humoral response to both the fVIII (200 μg/ml) and the OVA (30μg/ml). This suggests that fVIII may have adjuvant properties remaining to be discovered. Overall, these data suggest that the activation of thrombin provides co-stimulatory signals necessary for the immune response. Activated thrombin does this directly or indirectly through the activation of other blood components, including platelets.


Blood ◽  
2008 ◽  
Vol 112 (8) ◽  
pp. 3303-3311 ◽  
Author(s):  
Anne S. De Groot ◽  
Leonard Moise ◽  
Julie A. McMurry ◽  
Erik Wambre ◽  
Laurence Van Overtvelt ◽  
...  

Abstract We have identified at least 2 highly promiscuous major histocompatibility complex class II T-cell epitopes in the Fc fragment of IgG that are capable of specifically activating CD4+CD25HiFoxP3+ natural regulatory T cells (nTRegs). Coincubation of these regulatory T-cell epitopes or “Tregitopes” and antigens with peripheral blood mononuclear cells led to a suppression of effector cytokine secretion, reduced proliferation of effector T cells, and caused an increase in cell surface markers associated with TRegs such as FoxP3. In vivo administration of the murine homologue of the Fc region Tregitope resulted in suppression of immune response to a known immunogen. These data suggest that one mechanism for the immunosuppressive activity of IgG, such as with IVIG, may be related to the activity of regulatory T cells. In this model, regulatory T-cell epitopes in IgG activate a subset of nTRegs that tips the resulting immune response toward tolerance rather than immunogenicity.


Sign in / Sign up

Export Citation Format

Share Document