Corrigendum to the paper “Enzymatic production of biodiesel from Pistacia chinensis bge seed oil using immobilized lipase” [Fuel 92 (2012) 89–93]

Fuel ◽  
2012 ◽  
Vol 96 ◽  
pp. 611
Author(s):  
Xun Li ◽  
Xiao-Yun He ◽  
Zhi-Lin Li ◽  
You-Dong Wang ◽  
Chun-Yu Wang ◽  
...  
Fuel ◽  
2012 ◽  
Vol 92 (1) ◽  
pp. 89-93 ◽  
Author(s):  
Xun Li ◽  
Xiao-Yun He ◽  
Zhi-Lin Li ◽  
You-Dong Wang ◽  
Chun-Yu Wang ◽  
...  

OCL ◽  
2018 ◽  
Vol 25 (3) ◽  
pp. A302 ◽  
Author(s):  
Vanessa Sousa ◽  
Vitor Campos ◽  
Patrícia Nunes ◽  
Paula Pires-Cabral

Structured lipids (SLs) are novel triacylglycerols obtained by changing the native fatty acid (FA) profiles or by the incorporation of a new desired FA in the acylglycerol backbone. These modified fats present important medical and functional properties for food applications. This work aimed to synthetize a MLM-type SL, which consists of triacylglycerols containing a medium-chain FA (M) at sn-1,3 positions and a long-chain FA (L) at sn-2 position, by acidolysis of pumpkin seed oil with capric acid, catalyzed by a commercial lipase preparation from Thermomyces lanuginosa (Lipozyme TL IM). Reactions were performed at 45 °C, in solvent-free media, at 1:2 molar ratio (pumpkin seed oil:capric acid) and a fixed amount of immobilized lipase of 5%, 10%, 15% or 20%. Incorporations of C10:0 increased with time up to 31 h (29.9 ± 0.7 mol-%) when 5% lipase load was used. Significant differences were only observed between the results obtained with 5 and 20% of biocatalyst load. The subsequent experiment was carried out with 5% lipase load, at 45 °C, 1:2 molar ratio and in the presence of n-hexane. The results showed slightly higher incorporation yields in the presence of solvent, namely at 48 h-reaction (34.7 ± 1.0 mol-%). However, since the structured lipids are to be used in food products, together with environmental and economic concerns, solvent-free systems are preferred. In this study, the synthesis of a MLM-type SL from pumpkin seed oil for food uses was well succeeded.


2014 ◽  
Vol 7 (4) ◽  
pp. 1519-1528 ◽  
Author(s):  
Ze-Lin Huang ◽  
Tao-Xiang Yang ◽  
Jian-Zi Huang ◽  
Zhen Yang

Catalysts ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 914 ◽  
Author(s):  
Yang ◽  
Zhang

Enzymatic production of biodiesel from waste cooking oil (WCO) could contribute to resolving the problems of energy demand and environment pollutions.In the present work, Burkholderia cepacia lipase (BCL) was activated by surfactant imprinting, and subsequently immobilized in magnetic cross-linked enzyme aggregates (mCLEAs) with hydroxyapatite coated magnetic nanoparticles (HAP-coated MNPs). The maximum hyperactivation of BCL mCLEAs was observed in the pretreatment of BCL with 0.1 mM Triton X-100. The optimized Triton-activated BCL mCLEAs was used as a highly active and robust biocatalyst for biodiesel production from WCO, exhibiting significant increase in biodiesel yield and tolerance to methanol. The results indicated that surfactant imprinting integrating mCLEAs could fix BCL in their active (open) form, experiencing a boost in activity and allowing biodiesel production performed in solvent without further addition of water. A maximal biodiesel yield of 98% was achieved under optimized conditions with molar ratio of methanol-to-WCO 7:1 in one-time addition in hexane at 40 °C. Therefore, the present study displays a versatile method for lipase immobilization and shows great practical latency in renewable biodiesel production.


Catalysts ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 850 ◽  
Author(s):  
Xie ◽  
Huang

In this research, core–shell structured Fe3O4@MIL-100(Fe) composites were prepared by coating Fe3O4 magnetite with porous MIL-100(Fe) metal-organic framework (MOF) material, which were then utilized as magnetic supports for the covalent immobilization of the lipase from Candida rugosa through amide linkages. By using the carbodiimide/hydroxysulfosuccinimide (EDC/NHS) activation strategy, the lipase immobilization efficiency could reach 83.1%, with an activity recovery of 63.5%. The magnetic Fe3O4@MIL-100(Fe) composite and immobilized lipase were characterized by several techniques. The characterization results showed that the Fe3O4 core was coated with MIL-100(Fe) shell with the formation of perfect core–shell structured composites, and moreover, the lipase was covalently tethered on the magnetic carrier. The immobilized lipase displayed a strong magnetic response and could be facilely separated by an external magnetic field. With this magnetic biocatalyst, the maximum biodiesel conversion attained 92.3% at a methanol/oil molar ratio of 4:1, with a three-step methanol addition manner, and a reaction temperature of 40 °C. Moreover, the biocatalyst prepared in the present study was recycled easily by magnetic separation without significant mass loss, and displayed 83.6% of its initial activity as it was reused for five runs, thus allowing its potential application for the cleaner production of biodiesel.


Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1690
Author(s):  
Lee ◽  
Kang ◽  
Kim ◽  
Seo ◽  
Pyo ◽  
...  

1,9-Nonanedioic acid is one of the valuable building blocks for producing polyesters and polyamides. Thereby, whole-cell biosynthesis of 1,9-nonanedioic acid from oleic acid has been investigated. A recombinant Corynebacterium glutamicum, expressing the alcohol/aldehyde dehydrogenases (ChnDE) of Acinetobacter sp. NCIMB 9871, was constructed and used for the production of 1,9-nonanedioic acid from 9-hydroxynonanoic acid, which had been produced from oleic acid. When 9-hydroxynonanoic acid was added to a concentration of 20 mM in the reaction medium, 1,9-nonanedioic acid was produced to 16 mM within 8 h by the recombinant C. glutamicum. The dicarboxylic acid was isolated via crystallization and then used for the production of biopolyester by a lipase. For instance, the polyesterification of 1,9-nonanedioic acid and 1,8-octanediol in diphenyl ether by the immobilized lipase B from Candida antarctica led to formation of the polymer product with the number-average molecular weight (Mn) of approximately 21,000. Thereby, this study will contribute to biological synthesis of long chain dicarboxylic acids and their application for the enzymatic production of long chain biopolyesters.


2007 ◽  
Vol 98 (3) ◽  
pp. 648-653 ◽  
Author(s):  
D. Royon ◽  
M. Daz ◽  
G. Ellenrieder ◽  
S. Locatelli

Sign in / Sign up

Export Citation Format

Share Document