Analysis of capillary pressure and relative permeability hysteresis under low-salinity waterflooding conditions

Fuel ◽  
2016 ◽  
Vol 180 ◽  
pp. 228-243 ◽  
Author(s):  
Xiao Wang ◽  
Vladimir Alvarado
SPE Journal ◽  
2019 ◽  
Vol 24 (06) ◽  
pp. 2874-2888 ◽  
Author(s):  
Hasan Al–Ibadi ◽  
Karl D. Stephen ◽  
Eric J. Mackay

Summary Low–salinity waterflooding (LSWF) is an emergent technology developed to increase oil recovery. Laboratory–scale testing of this process is common, but modeling at the production scale is less well–reported. Various descriptions of the functional relationship between salinity and relative permeability have been presented in the literature, with respect to the differences in the effective salinity range over which the mechanisms occur. In this paper, we focus on these properties and their impact on fractional flow of LSWF at the reservoir scale. We present numerical observations that characterize flow behavior accounting for dispersion. We analyzed linear and nonlinear functions relating salinity to relative permeability and various effective salinity ranges using a numerical simulator. We analyzed the effect of numerical and physical dispersion of salinity on the velocity of the waterflood fronts as an expansion of fractional–flow theory, which normally assumes shock–like behavior of water and concentration fronts. We observed that dispersion of the salinity profile affects the fractional–flow behavior depending on the effective salinity range. The simulator solution is equal to analytical predictions from fractional–flow analysis when the midpoint of the effective salinity range lies between the formation and injected salinities. However, retardation behavior similar to the effect of adsorption occurs when these midpoint concentrations are not coincidental. This alters the velocities of high– and low–salinity water fronts. We derived an extended form of the fractional–flow analysis to include the impact of salinity dispersion. A new factor quantifies a physical or numerical retardation that occurs. We can now modify the effects that dispersion has on the breakthrough times of high– and low–salinity water fronts during LSWF. This improves predictive ability and also reduces the requirement for full simulation.


SPE Journal ◽  
2021 ◽  
pp. 1-22
Author(s):  
Hasan Al-Ibadi ◽  
Karl Stephen ◽  
Eric Mackay

SummaryModeling the dynamic fluid behavior of low-salinity waterflooding (LSWF) at the reservoir scale is a challenge that requires a coarse-grid simulation to enable prediction in a feasible time scale. However, evidence shows that using low-resolution models will result in a considerable mismatch compared with an equivalent fine-scale model with the potential of strong, numerically induced pulses and other dispersion-related effects. This work examines two new upscaling methods that have been applied to improve the accuracy of predictions in a heterogeneous reservoir where viscous crossflow takes place.We apply two approaches to upscaling to bring the flow prediction closer to being exact. In the first method, we shift the effective-salinity range for the coarse model using algorithms that we have developed to correct for numerical dispersion and associated effects. The second upscaling method uses appropriately derived pseudorelative permeability curves. The shape of these new curves is designed using a modified fractional-flow analysis of LSWF that captures the relationship between dispersion and the waterfront velocities. This second approach removes the need for explicit simulation of salinity transport to model oil displacement. We applied these approaches in layered models and for permeability distributed as a correlated random field.Upscaling by shifting the effective-salinity range of the coarse-grid model gave a good match to the fine-scale scenario, while considerable mismatch was observed for upscaling of the absolute permeability alone. For highly coarsened models, this method of upscaling reduced the appearance of numerically induced pulses. On the other hand, upscaling by using a single (pseudo)relative permeability produced more robust results with a very promising match to the fine-scale scenario. These methods of upscaling showed promising results when they were used to scale up fully communicating and noncommunicating layers as well as models with randomly correlated permeability.Unlike documented methods in the literature, these newly derived methods take into account the substantial effects of numerical dispersion and effective concentration on fluid dynamics using mathematical tools. The methods could be applied for other models where the phase mobilities change as a result of an injected solute, such as surfactant flooding and alkaline flooding. Usually these models use two sets of relative permeability and switch from one to another as a function of the concentration of the solute.


SPE Journal ◽  
2015 ◽  
Vol 20 (05) ◽  
pp. 1154-1166 ◽  
Author(s):  
Emad W. Al-Shalabi ◽  
Kamy Sepehrnoori ◽  
Mojdeh Delshad ◽  
Gary Pope

Summary There are few low-salinity-water-injection (LSWI) models proposed for carbonate rocks, mainly because of incomplete understanding of complex chemical interactions of rock/oil/brine. This paper describes a new empirical method to model the LSWI effect on oil recovery from carbonate rocks, on the basis of the history matching and validation of recently published corefloods. In this model, the changes in the oil relative permeability curve and residual oil saturation as a result of the LSWI effect are considered. The water relative permeability parameters are assumed constant, which is a relatively fair assumption on the basis of history matching of coreflood data. The capillary pressure is neglected because we assumed several capillary pressure curves in our simulations in which it had a negligible effect on the history-match results. The proposed model is implemented in the UTCHEM simulator, which is a 3D multiphase flow, transport, and chemical-flooding simulator developed at The University of Texas at Austin (UTCHEM 2000), to match and predict the multiple cycles of low-salinity experiments. The screening criteria for using the proposed LSWI model are addressed in the paper. The developed model gives more insight into the oil-production potential of future waterflood projects with a modified water composition for injection.


SPE Journal ◽  
2021 ◽  
pp. 1-22
Author(s):  
Arman Namaee-Ghasemi ◽  
Shahab Ayatollahi ◽  
Hassan Mahani

Summary Nonuniform mixing during low-salinity waterflooding (LSWF) is a function of the pore geometry and flow patterns within the porous system. Salinity-dependent wettability alteration (WA) changes the entry capillary pressure, which may mobilize the trapped oil depending on the flow regime and salt dispersion pattern. The complex interplay between the wettability, capillary number (NCa), and salt dispersion caused by pore-scale heterogeneity on the efficiency of LSWF is not well understood. In this paper, direct numerical simulations in a pore-doublet model (PDM) were carried out with OpenFOAM® (OpenCFD, Berkshire, UK) using the volume-of-fluid (VOF) method. Oil trapping and remobilization were studied at relevant NCa as low as 10−6 under different initial wettability states. Depending on the effective salinity ranges (ESRs) for the low-salinity effect (LSE), three WA models were implemented, and the effects of WA degree and salinity distribution on LSWF flow dynamics were investigated. The slow process of WA by means of thin film phenomena was captured by considering a diffuse interface at the three-phase contact line. Because of the pore structure of the pore doublet, only in nonwater-wet cases, oil is trapped in the narrower side channel (NSC) after high-salinity waterflooding (HSWF) and may be remobilized by LSWF. In strongly oil-wet cases, oil is recovered gradually by LSWF by means of a film-flow mechanism near the outlet. In moderately oil-wet cases, however, the entire trapped oil ganglion can be mobilized, provided that the entry capillary pressure is sufficiently reduced. The degree of WA, ESR, kinetics of WA, and the wettability of pore surface at the outlet are determining factors in the drainage of the trapped oil. The salt dispersion pattern in the flowing region [i.e., wider side channel (WSC)] controls the wettability distribution and the rate and magnitude of oil recovery from the stagnant region (i.e., NSC). The difference between the WA models is more apparent near the outlet, where the salinity profile is more dispersed. The ESR in which WA occurs determines the speed of the entry capillary pressure reduction and, thus, the recovery factor. In cases where WA occurs at a salinity threshold (ST), the highest recovery is obtained, whereas with the full-salinity-range WA model, the oil recovery performance is lowest. From the capillary desaturation perspective, it is found that the LSE becomes more pronounced when NCa is less than 10−5, and the dispersion regime is in the power-law interval. Because the adverse effect of salt dispersion in the flowing region is delayed, the LSE is intensified. For the simulations to be representative of the actual conditions in the porous medium, much lower NCa than currently used in many research works must be studied. Otherwise, the simulations may lead to over- or underestimation of the LSE. The synergetic or antagonistic effects caused by the interplay between viscous and capillary forces and dispersion may lead to total recovery or entrapment of oil, regardless of WA. Based on the pore geometry, initial wettability state, and balance of forces, the mobilized oil may flow past the conjunction (favorable) or in the backward direction (unfavorable) to the WSC and get retrapped. Successful drainage of oil from the pore system after WA is essential for observing incremental oil recovery by LSWF.


2021 ◽  
Author(s):  
Ahmed M. Selem ◽  
Nicolas Agenet ◽  
Martin J. Blunt ◽  
Branko Bijeljic

Abstract We investigated pore-scale oil displacement and rock wettability in tertiary low salinity waterflooding (LSW) in a heterogeneous carbonate sample using high-resolution three-dimensional imaging. This enabled the underlying mechanisms of the low salinity effect (LSE) to be observed and quantified in terms of changes in wettability and pore-scale fluid configuration, while also measuring the overall effect on recovery. The results were compared to the behavior under high salinity waterflooding (HSW). To achieve the wetting state found in oil reservoirs, an Estaillades limestone core sample was aged at 11 MPa and 80°C for threeweeks. The moderately oil-wet sample was then injected with high salinity brine (HSB) at a range of increasing flow rates, namely at 1, 2,4, 11, 22 and 42 µL/min with 10 pore volumes injected at each rate.Subsequently, low salinity brine (LSB) was injected following the same procedure. X-ray micro-computed tomography (micro-CT) was usedto visualize the fluid configuration in the pore space.A total of eight micro-CT images, with a resolution of 2.3 µm/voxel, wereacquired after both low salinity and high salinity floods.These high-resolution images were used to monitor fluid configuration in the porespace and obtain fluid saturations and occupancy maps. Wettabilitywascharacterized by measurements of in situ contactanglesand curvatures. The results show that the pore-scale mechanisms of improved recovery in LSW are consistent with the development of water micro-dropletswithin the oil and the expansion of thin water films between the oil and rock surface. Before waterflooding and during HSW, the measured contact angles were constant and above 110°, while the meancurvature and the capillary pressure values remained negative, suggesting that the HSB did not change the wettability state of the rock. However, with LSW the capillary pressure increased towards positive values as the wettability shifted towards a mixed-wet state. The fluidoccupancy analysis reveals a salinity-induced change in fluid configuration in the pore space. HSB invaded mainly the larger pores and throats, but with LSW brine invaded small-size pores and throats.Overall,our analysis shows that a change from a weakly oil-wet towards a mixed-wet state was observed mainly after LSW, leading to an incremental increase in oil recovery. This work established a combined coreflooding and imaging methodology to investigate pore-scale mechanisms and wettability alteration for tertiary LSW in carbonates.It improves our understanding of LSW asan enhanced oil recovery (EOR) method for potential field-scale applications. The data provides a valuable benchmark for pore-scale modelling as well as an insight into how even modest wettability changes can lead to additional oil recovery.


Author(s):  
Falan Srisuriyachai ◽  
Monrawee Pancharoen ◽  
Rapheepan Laochamroonvoraponse ◽  
Pattraporn Juckthong ◽  
Arisara Kukiattikoon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document