scholarly journals Improved production of biolubricants from soybean oil and different polyols via esterification reaction catalyzed by immobilized lipase from Candida rugosa

Fuel ◽  
2018 ◽  
Vol 215 ◽  
pp. 705-713 ◽  
Author(s):  
Elisa D.C. Cavalcanti ◽  
Érika C.G. Aguieiras ◽  
Priscila R. da Silva ◽  
Jaqueline G. Duarte ◽  
Eliane P. Cipolatti ◽  
...  
2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Nikola Milašinović ◽  
Sonja Jakovetić ◽  
Zorica Knežević-Jugović ◽  
Nedeljko Milosavljević ◽  
Marija Lučić ◽  
...  

This study reports the synthesis of polymeric matrices based onN-isopropylacrylamide and itaconic acid and its application for immobilization of lipase fromCandida rugosa. The lipase was immobilized by entrapment method. Free and immobilized lipase activities, pH and temperature optima, and storage stability were investigated. The optimum temperature for free and entrapped lipase was found to be 40 and 45°C, while the optimum pH was observed at pH 7 and 8, respectively. Both hydrolytic activity in an aqueous medium and esterolytic activity in an organic medium have been evaluated. Maximum reaction rate (Vmax) and Michaelis-Menten constants (Km) were also determined for immobilized lipase. Storage stability of lipase was increased as a result of immobilization process. Furthermore, the operational stability and reusability of the immobilized lipase in esterification reaction have been studied, and it was observed that after 10 cycles, the residual activity for entrapped lipase was as high as 50%, implying that the developed hydrogel and immobilized system could provide a promising solution for the flavor ester synthesis at the industrial scale.


2008 ◽  
Vol 39 (3) ◽  
pp. 450-456 ◽  
Author(s):  
A. Bódalo ◽  
J. Bastida ◽  
M.F. Máximo ◽  
M.C. Montiel ◽  
M. Gómez ◽  
...  

2009 ◽  
Vol 16 (02) ◽  
pp. 323-327 ◽  
Author(s):  
HONG-TAO DENG ◽  
YAN LIN ◽  
JUAN-JUAN WANG ◽  
ZHONG-YANG LIU ◽  
MIAO MA ◽  
...  

The hydrophobic surface modification of chitosan gels (CS) was carried out using the amidating reaction of amido groups on a gel surface with propionic acid, stearic acid, and benzoic acid, respectively, activated by 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS). Lipase from Candida rugosa was immobilized by adsorption on the nascent CS, propionyl-modified gels (PCS), stearyl-modified gels (SCS), and benzoyl-modified gels (BCS), respectively. The adsorption capacity and activity of immobilized lipase were investigated. It was found that the surface modification improved the adsorption capacity of lipase, and the activity retention of immobilized lipase increased from 52.34% for CS to 57.17%, 78.26% and 69.22%, respectively, for PCS, SCS, and BCS.


2012 ◽  
Author(s):  
Irvan Dahlan ◽  
Azlina Harun @ Kamaruddin ◽  
Ghasem D. Najafpour

Sintesis sitronelil butirat melalui pengesteran langsung telah dikaji di dalam n–hexane sebagai pelarut organik yang dimangkinkan oleh lipase bebas dan lipase tersekatgerak daripada Candida rugosa. Kajian telah dijalankan untuk mengesahkan pengaruh pelbagai parameter pada pembentukan sitronelil butirat oleh lipase bebas daripada Candida rugosa, iaitu kesan kepekatan lipase, nisbah molar substrat, suhu, tiga jenis bahan sokongan untuk lipase tersekatgerak dan nisbah sekatgerak. Peningkatan kepekatan lipase bebas menyebabkan peningkatan kepada penukaran asid. Sifat peningkatan tidak berubah dari tindak balas pengesteran dapat diperhatikan pada kepekatan lipase tinggi yang memberikan kepekatan optimum lipase pada 3.33 g/l dengan penukaran asid sebanyak 92%. Kemungkinan ini disebabkan oleh tapak aktif lipase yang berlebihan yang berada di dalam zarah lipase pukal, yang tidak memberi sumbangan bererti kepada tindak balas. Aktiviti lipase didapati terencat dengan bertambahnya kepekatan asid butirik (pada kepekatan sitronelol tetap) dan sitronelol (pada kepekatan asid butirik tetap). Ini disebabkan adanya persaingan semulajadi pengikatan alkohol dan asid. Penukaran asid optimum diperolehi pada suhu 40°C selepas 24 jam pengeraman. Bagaimanapun, atas dari suhu ini, aktiviti pengesteran yang dimangkinkan oleh lipase mula menurun kerana penyahaslian protein. Daripada tiga jenis sokongan yang digunakan untuk lipase tersekatgerak, Amberlite MB–1 menunjukkan penukaran asid tertinggi berbanding dengan Amberlite XAD–1180 dan Celite 545. Penukaran asid optimum diperolehi pada nisbah sekatgerak 10 mg lipase/g penyokong. Pada nisbah sekatgerak ini, lipase mengoptimumkan sentuhan dengan permukaan penyokong dengan mengekalkan konformasi yang aktif pada tahap optimum. Kata kunci: Sitronelil butirat; lipase Candida rugosa; pengesteran langsung; lipase tersekatgerak; pelarut organik Free and immobilized Candida rugosa lipases were investigated for the synthesis of citronellyl butyrate by direct esterification reaction in n–hexane as organic solvent. A set of experiments was carried out to verify the influence of various parameters on the formation of citronellyl butyrate by free Candida rugosa lipase, such as lipase loading, substrate molar ratio, temperature, three kinds of support for immobilization, and ratio of immobilization. The conversion was increased with increasing lipase loading. The behavior of leveling–off in esterification was observed at higher lipase loading which gave the optimal amount of lipase loading at 3.33 g/l with 92% conversion. This might be due to the excess of lipase active sites, which remained inside the bulk of lipase particles, was not contributing significantly to the reaction. Increasing butyric acid and citronellol concentrations (at fixed citronellol and butyric acid concentrations, respectively) inhibited the lipase activity due to competitive nature of alcohol and acid binding. Optimal acid conversion was obtained at 40°C after 24–h incubation time. Above this temperature, however, the activity of lipase–catalyzed esterification begins to decrease due to denaturation of protein. From the three kinds of supports for immobilized lipase, Amberlite MB–1 showed the highest conversion compared to Amberlite XAD–1180 and Celite 545. The optimal acid conversion was obtained at lipase loading of 10 mg lipase/g support. At this loading, lipase attempts to optimize its contact with the surface of the support whereby optimum active conformation was retained. Key words: Citronellyl butyrate; Candida rugosa lipase; direct esterification; immobilized lipase; organic media


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 395 ◽  
Author(s):  
Zhe Dong ◽  
Meng-Ying Jiang ◽  
Jie Shi ◽  
Ming-Ming Zheng ◽  
Feng-Hong Huang

In this study, Candida rugosa lipase (CRL) was immobilized into modified hollow mesoporous silica (HMSS) materials with different hydrophobicity. Among propyl-(C3), phenyl-(C6), octyl-(C8), and octadecyl-(C18) modified HMSS as well as native HMSS, taking advantage of more hydrophobic microenvironment, the HMSS-C18-CRL showed exceptional performance in enzymatic esterification reaction. Using the novel HMSS-C18 with immobilized CRL (HMSS-C18-CRL), we investigated the esterification of phytosterols with polyunsaturated fat acid (PUFA) in a solvent-free system for the production of phytosterols esters. Response surface methodology (RSM) was applied to model and optimize the reaction conditions, namely, the enzyme load (5–25%), reaction time (10–110 min), molar ratio of α-linolenic acid (ALA)/phytosterols (1:1–7:1) and represented by the letters E, T, and M respectively. Best-fitting models were successfully established by multiple regressions with backward elimination. The optimum production was achieved at 70 min for reaction time, 20% based on the weight of substrate for enzyme loading, and 5.6:1 for ALA/phytosterols molar ratio. Under optimized conditions, a conversion of about 90 ± 2% was achieved. These results indicated that HMSS-C18-CRL demonstrates to be a promising catalyst and can be potentially applied in the functional lipid production.


2011 ◽  
Vol 34 (7) ◽  
pp. 803-810 ◽  
Author(s):  
Nevena Ž. Prlainović ◽  
Zorica D. Knežević-Jugović ◽  
Dušan Ž. Mijin ◽  
Dejan I. Bezbradica

Catalysts ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 527 ◽  
Author(s):  
Gaojian Ma ◽  
Lingmei Dai ◽  
Dehua Liu ◽  
Wei Du

Acidic oil, which is easily obtained and with lower cost, is a potential raw material for biodiesel production. Apart from containing large quantity of FFAs (free fatty acids), acidic oil usually contains some amount of inorganic acid, glycerides and some other complex components, leading to complicated effect on lipase’s catalytic performance. Exploring the efficient process of converting acidic oil for biodiesel production is of great significance to promote the use of acidic oil. A two-step conversion process for acidic soybean oil was proposed in this paper, where sulfuric acid-mediated hydrolysis was adopted first, then the hydrolyzed free fatty acid, collected from the upper oil layer was further subject to the second-step esterification catalyzed by immobilized lipase Novozym435. Through this novel process, the negative effect caused by harmful impurities and by-product glycerol on lipase was eliminated. A fatty acid methyl ester (FAME) yield of 95% could be obtained with the acid value decreased to 4 mgKOH/g from 188 mgKOH/g. There was no obvious loss in lipase’s activity and a FAME yield of 90% could be maintained with the lipase being repeatedly used for 10 batches. This process was found to have a good applicability to different acidic oils, indicating it has great prospect for converting low quality oil sources for biodiesel preparation.


2021 ◽  
Author(s):  
Xia Jiaojiao ◽  
Yan Yan ◽  
Bin Zou ◽  
Adesanya Idowu Onyinye

Abstract The cross-linked enzyme aggregates (CLEAs) are one of the technologies that quickly immobilize the enzyme without a carrier. This carrier-free immobilization method has the advantages of simple operation, high reusability and low cost. In this study, ionic liquid with amino group (1-aminopropyl-3-methylimidazole bromide,IL) was used as the novel functional surface molecule to modify industrialized lipase (Candida rugosa lipase, CRL). The enzymatic properties of the prepared CRL-FIL-CLEAs were investigated. The activity of CRL-FIL-CLEAs (5.51 U/mg protein) was 1.9 times higher than that of CRL-CLEAs without surface modification (2.86 U/mg protein). After incubation at 60℃ for 50 min, CRL-FIL-CLEAs still maintained 61% of its initial activity, while the value for CRL-CLEAs was only 22%. After repeated use for five times, compared with the 22% residual activity of CRL-CLEAs, the value of CRL-FIL-CLEAs was 51%. Further kinetic analysis indicated that the Km values for CRL-FIL-CLEAs and CRL-CLEAs were 4.80 mM and 8.06 mM, respectively, which was inferred that the affinity to substrate was increased after modification. Based on the above results, it was indicated that this method provided a new idea for the effective synthesis of immobilized enzyme.


Sign in / Sign up

Export Citation Format

Share Document