The effect of exhaust gas composition on the kinetics of soot oxidation and diesel particulate filter regeneration

Fuel ◽  
2018 ◽  
Vol 220 ◽  
pp. 453-463 ◽  
Author(s):  
Soheil Soltani ◽  
Ronnie Andersson ◽  
Bengt Andersson
2018 ◽  
Vol 20 (8-9) ◽  
pp. 953-966 ◽  
Author(s):  
Madhu Singh ◽  
Mek Srilomsak ◽  
Yujun Wang ◽  
Katsunori Hanamura ◽  
Randy Vander Wal

Development of the regeneration process on diesel particulate filters requires a better understanding of soot oxidation phenomena, especially its relation to soot nanostructure. Nitrogen dioxide (NO2) is known to play an essential role in passive regeneration by oxidizing soot at low temperatures, especially in the presence of oxygen (O2) in the exhaust. However, change in soot nanostructure due to oxidation by NO2–O2 mixtures has not received much attention. This work focuses on nanostructure evolution during passive regeneration of the diesel particulate filter by oxidation of soot at normal exhaust gas temperatures (300°C–400°C). High-resolution transmission electron microscopy of partially oxidized model carbons (R250, M1300, arc-generated soot) and diesel soot under NO2–O2 mixtures is used to investigate physical changes in nanostructure correlating with the material’s behavior during oxidation. Microscopy reveals the changing nanostructure of model carbons during oxidation while fringe analysis of the images points to the differences in the structural metrics of fringe length and tortuosity of the resultant structures. The variation in oxidation rates highlights the inter-dependence of the material’s reactivity with its structure. NO2 preferentially oxidizes edge-site carbon, promotes surface oxidation by altering the particle’s burning mode with increased overall reactivity of NO2+O2 resulting in inhibition of internal burning, typically observed by O2 at exhaust gas temperatures.


2012 ◽  
Vol 26 (2) ◽  
pp. 1192-1201 ◽  
Author(s):  
K. Theinnoi ◽  
S. S. Gill ◽  
A. Tsolakis ◽  
A .P. E. York ◽  
A. Megaritis ◽  
...  

2020 ◽  
pp. 146808742092603
Author(s):  
Wonmo Kang ◽  
Sukang Pyo ◽  
Hongsuk Kim

Diesel particulate filter regeneration using intake and exhaust throttling is technically simple and economically efficient compared to other methods. The purpose of this study is to investigate not only the reasons for the increase in exhaust temperature during intake or exhaust throttling but also their feasibility as a diesel particulate filter regeneration technology. In this study, a non-road diesel engine having a mechanical fuel injection pump was used for experiments. The changes in exhaust temperatures were measured during intake and exhaust throttling for the no-load maximum revolutions per minute engine condition. The experimental results exhibited that both intake and exhaust throttling reduced the intake air mass flow rate and increased piston pumping, which then increased fuel consumption. These effects were the primary reasons for increasing the temperature of exhaust gases. In particular, intake throttling was more effective than exhaust throttling in terms of reducing the intake air mass flow rate. However, exhaust throttling caused larger pumping losses, resulting in higher fuel consumption. Furthermore, in case of exhaust throttling, engine combustion was possible even at high equivalence ratios because of the larger amounts of residual gases in the combustion chamber. In summary, exhaust throttling is more effective for regenerating a diesel particulate filter at a high temperature than intake throttling. In addition, this study verified the feasibility of diesel particulate filter regeneration using exhaust throttling through analyses of diesel particulate filter regeneration efficiency, fuel consumption, and exhaust concentration when regenerating the diesel particulate filter by increasing the exhaust temperature through exhaust throttling.


AIChE Journal ◽  
2005 ◽  
Vol 51 (9) ◽  
pp. 2534-2546 ◽  
Author(s):  
Margaritis Kostoglou ◽  
Athanasios G. Konstandopoulos

Sign in / Sign up

Export Citation Format

Share Document