Experimental investigation of CO2 injection into coal seam reservoir at in-situ stress conditions for enhanced coalbed methane recovery

Fuel ◽  
2019 ◽  
Vol 236 ◽  
pp. 709-716 ◽  
Author(s):  
Zhengdong Liu ◽  
Yuanping Cheng ◽  
Yongkang Wang ◽  
Liang Wang ◽  
Wei Li
Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 626 ◽  
Author(s):  
Chaojun Fan ◽  
Mingkun Luo ◽  
Sheng Li ◽  
Haohao Zhang ◽  
Zhenhua Yang ◽  
...  

The reservoir permeability dominates the transport of gas and water in coal seam. However, coal seams rich in gas usually contain various pores and fractures blocked by a large amount of minerals, which leads to an ultra-low permeability and gas extraction rate, and thus an increase of drilling workload. We first propose a thermo-hydro-mechanical-chemical coupled model (THMC) for the acid fracturing enhanced coalbed methane recovery (AF-ECBM). Then, this model is applied to simulate the variation of key parameters during AF-ECBM using a 2D geometry. The effect of different extraction schedules are comparatively analyzed to give an insight into these complex coupling responses in coal seam. Result confirms that the AF-ECBM is an effective way to increase the reservoir permeability and improve the gas production using the proposed model. The range of permeability increment zone increases most dramatically in the way of acid fracturing, followed by none-acid fracturing and acidizing over time. The gas production in order is: acid fracturing (AF-ECBM) > fracturing (F-ECBM) > acidification (A-ECBM)> direct extraction (D-CBM).


Fuel ◽  
2021 ◽  
Vol 292 ◽  
pp. 120283
Author(s):  
Zheng Shang ◽  
Haifeng Wang ◽  
Bing Li ◽  
Congmeng Hao ◽  
zhengyang Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document