Passive cell disruption lipid extraction methods of microalgae for biofuel production – A review

Fuel ◽  
2019 ◽  
Vol 252 ◽  
pp. 699-709 ◽  
Author(s):  
Senthil Nagappan ◽  
Saravanan Devendran ◽  
Pei-Chien Tsai ◽  
Selvapriya Dinakaran ◽  
Hans-Uwe Dahms ◽  
...  
Author(s):  
Ahasanul Karim ◽  
M. Amirul Islam ◽  
Zaied Bin Khalid ◽  
Che Ku Mohammad Faizal ◽  
Md. Maksudur Rahman Khan ◽  
...  

Author(s):  
Mustafa Hac İsa ◽  
Cansu Metin ◽  
Ertan Ercan ◽  
Yunus Alparslan

In this study, it was investigated to increase the lipid yield of the microalgae Schizochytrium sp., by applying different cell disruption methods. Therefore, acid treatment with HCl, osmotic shock, enzyme applications and ultrasonic homogenizer were tried in this algae species combined with the Bligh and Dyer and Soxhlet methods as an alternative to classical lipid extraction methods. As a result of the study, the highest lipid value (21.72 ± 0.74%) was obtained in enzyme application with Bligh and Dyer method (BDE). The cell disruption processes increased the lipid yield compared to the control groups. The highest PUFA DHA was found in the range of 4.58 ± 2.44-19.25 ± 0.09%, and the highest value was observed in the BDE group. Highest SFA was palmitic acid. Effective results were observed in the Bligh and Dyer applied groups in terms of both total lipid and total fatty acids. In cell disruption methods, particularly in enzyme and HCl extraction, good results were obtained in terms of fatty acids. The highest total fatty acids and the highest lipid content were detected in the Bligh and Dyer enzyme (BDE). Enzyme applications are also advantageous because of being environmentally friendly. Lipid health indices such as n-6/n-3, PUFA/SFA, Atherogenicity index (AI), Thrombogenicity index (TI) and hypocholesterolemic/hypercholesterolemic ratios (HH) were almost favorable. With this study, an appropriate lipid extraction methods were determined to provide an economical and environmental friendly suggestion for future studies to be used in areas such as food, feed and cosmetics.


2015 ◽  
Vol 9 (6) ◽  
pp. 588-595
Author(s):  
Haifa Chtourou ◽  
Ines Dahmen ◽  
Fatma Karray ◽  
Sami Sayadi ◽  
Abdelhafidh Dhouib

2012 ◽  
Vol 65 (3) ◽  
pp. 567-573 ◽  
Author(s):  
J. Sheng ◽  
R. Vannela ◽  
B. E. Rittmann

In order to extract intracellular lipids from cyanobacterial Synechocystis PCC 6803 for biofuel production, seven cell-disruption methods – autoclaving, bead beating, freeze drying, French press, microwave, pulsed electric fields (PEF), and ultrasound – were tested prior to lipid extraction to make intracellular lipids more accessible by organic solvents. The different methods brought about distinct disruption effects to the cell envelope, plasma membrane, and thylakoid membranes that were related to extraction efficiency. Microwave, PEF, and ultrasound with temperature control had significant enhancement of lipid extraction (9–13% increases). Bead beating, freeze drying, and French press did not provide significant enhancement of lipid extraction. Furthermore, autoclaving, French press, and ultrasound treatments caused significant release of lipid into the medium, which may increase solvent usage and make medium recycling difficult. In order to minimize the cost of cell-disruption and lipid-extraction steps, microwave and PEF (with temperature control) might be best suited for large-scale cell disruption among all techniques investigated.


2014 ◽  
Vol 28 (3) ◽  
pp. 341-348 ◽  
Author(s):  
Agata Piasecka ◽  
Izabela Krzemińska ◽  
Jerzy Tys

Abstract The prospect of depletion of natural energy resources on the Earth forces researchers to seek and explore new and alternative energy sources. Biomass is a composite resource that can be used in many ways leading to diversity of products. Therefore, microalgal biomass offers great potential. The main aim of this study is to find the best physical method of microalgal biomass pretreatment that guarantees efficient lipid extraction. These studies identifies biochemical composition of microalgal biomass as source for biodisel production. The influence of drying at different temperatures and lyophilization was investigated. In addition, wet and untreated biomass was examined. Cell disruption (sonication and microwave) techniques were used to improve lipid extraction from wet biomass. Additionally, two different extraction methods were carried out to select the best method of crude oil extraction. The results of this study show that wet biomass after sonication is the most suitable for extraction. The fatty acid composition of microalgal biomass includes linoleic acid (C18:2), palmitic acid (C16:0), oleic acid (C18:1), linolenic acid (C18:3), and stearic acid (C18:0), which play a key role in biodiesel production.


Sign in / Sign up

Export Citation Format

Share Document