scholarly journals Efficient plasma-catalysis coupling for CH4 and CO2 transformation in a fluidized bed reactor: Comparison with a fixed bed reactor

Fuel ◽  
2021 ◽  
Vol 288 ◽  
pp. 119575
Author(s):  
Nassim Bouchoul ◽  
Houcine Touati ◽  
Elodie Fourré ◽  
Jean-Marc Clacens ◽  
Catherine Batiot-Dupeyrat
Author(s):  
Wen-Zhi Lu ◽  
Li-Hua Teng ◽  
Wen-De Xiao

Dimethyl ether (DME) is regarded as an environmentally benign fuel for vehicles. Two kinds of reactor technologies for DME synthesis have been proposed by previous researchers: the fixed-bed and the slurry reactor. As the reactions are highly exothermic and the temperature window of the catalyst is very narrow, the fixed-bed reactor provides a limited heat removal capability and a low conversion of the syngas. The slurry reactor can provide an effective temperature control but a very high inter-phase mass transfer resistance is added by the liquid medium. The Fluidized bed reactor can be an ideal reactor for DME synthesis as it possesses both high heat and mass transfer efficiencies. In this paper, a two-phase model is used to theoretically analyze the DME synthesis in a fluidized bed reactor, with both phases assumed to be in plug flow and taking into account the changes in bubble diameter resulting from the reaction. Three reactions take place simultaneously when DME is manufactured from the syngas (H2 + CO): a) CO+2H2 = CH3OH; b) 2CH3OH = DME+H2O; and c) CO+H2O = CO2+H2. The simulation shows that, at the reactor outlet, the equilibrium approaches of the three reactions are 0.32, 0.1, and 0.61, respectively. When H2/CO=1.0, the CO conversion and DME selectivity in a fluidized bed reactor are 62% and 95%, while those in a fixed-bed reactor are 9% and 86%. In a slurry reactor, the CO conversion and DME selectivity are 17% and 70%, respectively. Therefore, the fluidized-bed is the most promising candidate reactor for conducting the DME synthesis from syngas. Effects of the operating conditions on the performance of DME synthesis in the fluidized-bed reactor are discussed in details. The optimal H2/CO ratio is between 1.0-1.5, and increasing the pressure is shown to improve the reactor performance.


2016 ◽  
Vol 30 (6) ◽  
pp. 4858-4868 ◽  
Author(s):  
Paola Brachi ◽  
Francesco Miccio ◽  
Michele Miccio ◽  
Giovanna Ruoppolo

2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Manuel Wuerth ◽  
Moritz Becker ◽  
Peter Ostermeier ◽  
Stephan Gleis ◽  
Hartmut Spliethoff

Thermochemical energy storage (TCES) represents one of the most promising energy storage technologies, currently investigated. It uses the heat of reaction of reversible reaction systems and stands out due to the high energy density of its storage materials combined with the possibility of long-term storage with little to no heat losses. Gas–solid reactions, in particular the reaction systems CaCO3/CaO, CaO/Ca(OH)2 and MgO/Mg(OH)2 are of key interest in current research. Until now, fixed bed reactors are the state of the art for TCES systems. However, fluidized bed reactors offer significant advantages for scale-up of the system: the improved heat and mass transfer allows for higher charging/discharging power, whereas the favorable, continuous operation mode enables a decoupling of storage power and capacity. Even though gas–solid fluidized beds are being deployed for wide range of industrial operations, the fluidization of cohesive materials, such as the aforementioned metal oxides/hydroxides, still represents a sparsely investigated field. The consequent lack of knowledge of physical, chemical, and technical parameters of the processes on hand is currently a hindering aspect for a proper design and scale-up of fluidized bed reactors for MW applications of TCES. Therefore, the experimental research at Technical University of Munich (TUM) focuses on a comprehensive approach to address this problem. Preliminary experimental work has been carried out on a fixed bed reactor to cover the topic of chemical cycle stability of storage materials. In order to investigate the fluidization behavior of the bulk material, a fluidized bed cold model containing a heat flux probe and operating at atmospheric conditions has been deployed. The experimental results have identified the heat input and output as the most influential aspect for both the operation and a possible scale-up of such a TCES system. The decisive parameter for the heat input and output is the heat transfer coefficient between immersed heat exchangers and the fluidized bed. This coefficient strongly depends on the quality of fluidization, which in turn is directly related to the geometry of the gas distributor plate. At TUM, a state-of-the-art pilot fluidized bed reactor is being commissioned to further investigate the aforementioned aspects. This reactor possesses an overall volume of 100 L with the expanded bed volume taking up 30 L. Two radiation furnaces (64 kW) are used to heat the reactor. The heat of reaction of the exothermal hydration reaction is removed by water, evaporating in a cooling coil, immersed in the fluidized bed. Fluidization is being achieved with a mixture of steam and nitrogen at operating temperatures of up to 700 °C and operating pressures between −1 and 6 bar(g). The particle size is in the range of d50 = 20 μm. While initial experiments on this reactor focus on optimal operating and material parameters, the long-term goal is to establish correlations for model design and scale-up purposes.


Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 530
Author(s):  
Katarzyna Bizon ◽  
Krzysztof Skrzypek-Markiewicz ◽  
Mateusz Prończuk

The paper outlines the concept of process intensification and integration, with a particular focus on sorption-enhanced, solid-catalyzed chemical processes. An alternative and attractive solution to a system of parallel fixed-bed apparatuses is evaluated, which utilizes the solids’ circulation in a dual fluidized-bed reactor–regenerator system. This allows for continuous mode operation and greatly simplifies the control procedures. To illustrate some aspects related to the steady-state operation of such a dual system, a simplified mathematical model of two interconnected fluidized beds operating in the bubbling regime was developed. A generic reversible chemical reaction of the overall second-order, catalyzed by bifunctional pellets, integrating catalytic active sites and adsorption sites, was considered as a test case. The model was used to study the effects of the bed hydrodynamics, as well as of the chemical reaction and physical adsorption equilibrium constants. It was shown how the superposition of various chemical, physical and hydrodynamical phenomena affects the performance of the system.


Author(s):  
Khanh-Quang Tran ◽  
M. Kristiina Iisa ◽  
Britt-Marie Steenari ◽  
Oliver Lindqvist ◽  
Magnus Hagstro¨m ◽  
...  

Alkali metals present in biomass fuels may cause increased bed agglomeration during fluidized bed combustion. In worst case this may lead to complete defluidization of the bed. Other problems caused by alkali metals include increased fouling and slagging. One possibility to reduce the impact of alkali metals is to add sorbents, e.g. aluminosilicates, to the bed for the capture of alkali metals. In the current investigation, the capture of vapor phase potassium compounds by kaolin was investigated in a fixed bed reactor. The reactor consisted of an alkali metal source placed at a variable temperature from which gaseous potassium compounds were generated, a fixed bed holding the kaolin, and an on-line detector for the alkali metal concentration. The on-line alkali metal detector was based on ionization of alkali metals on hot surfaces and is capable of detecting alkali metals down to ppb levels. This makes it possible to perform experiments at alkali metal concentrations relevant to fluidized bed combustion of biomass fuels. In the experiments, KCl was used as the alkali metal source with inlet concentrations of 0.5–3.5 ppm. The experiments were performed at reactor temperatures of 800–900°C and a contact time of 0.26 s. The capture efficiencies of KCl were always above 97%. The capture efficiency was somewhat higher in oxidizing than in reducing gas atmospheres. In the oxidizing gas atmosphere, the conversion was slightly higher with H2O addition than without. The capture efficiency decreased slightly as temperature or KCl concentration was increased.


Sign in / Sign up

Export Citation Format

Share Document