Influence of fuel injection timing strategies on performance, combustion, emissions and particulate matter characteristics fueled with rapeseed methyl ester in modern diesel engine

Fuel ◽  
2021 ◽  
Vol 306 ◽  
pp. 121589
Author(s):  
Hayder A. Dhahad ◽  
Mohammed A. Fayad ◽  
Miqdam T. Chaichan ◽  
Alaa Abdulhady Jaber ◽  
T. Megaritis
2016 ◽  
Vol 138 (5) ◽  
Author(s):  
Nadir Yilmaz ◽  
Erol Ileri ◽  
Alpaslan Atmanlı ◽  
A. Deniz Karaoglan ◽  
Umut Okkan ◽  
...  

An experimental investigation was conducted to evaluate the suitability of hazelnut oil methyl ester (HOME) for engine performance and exhaust emissions responses of a turbocharged direct injection (TDI) diesel engine. HOME was tested at full load with various engine speeds by changing fuel injection timing (12, 15, and 18 deg CA) in a TDI diesel engine. Response surface methodology (RSM) and least-squares support vector machine (LSSVM) were used for modeling the relations between the engine performance and exhaust emission parameters, which are the measured responses and factors such as fuel injection timing (t) and engine speed (n) parameters as the controllable input variables. For this purpose, RSM and LSSVM models from experimental results were constructed for each response, namely, brake power, brake-specific fuel consumption (BSFC), brake thermal efficiency (BTE), exhaust gas temperature (EGT), oxides of nitrogen (NOx), carbon dioxide (CO2), carbon monoxide (CO), and smoke opacity (N), which are affected by the factors t and n. The results of RSM and LSSVM were compared with the observed experimental results. These results showed that RSM and LSSVM were effective modeling methods with high accuracy for these types of cases. Also, the prediction performance of LSSVM was slightly better than that of RSM.


Fuel ◽  
2013 ◽  
Vol 111 ◽  
pp. 374-383 ◽  
Author(s):  
Avinash Kumar Agarwal ◽  
Dhananjay Kumar Srivastava ◽  
Atul Dhar ◽  
Rakesh Kumar Maurya ◽  
Pravesh Chandra Shukla ◽  
...  

2015 ◽  
Vol 4 (1) ◽  
pp. 1-10 ◽  
Author(s):  
D.N. Basavarajappa ◽  
N. R. Banapurmath ◽  
S.V. Khandal ◽  
G. Manavendra

For economic and social development of any country energy is one of the most essential requirements. Continuously increasing price of crude petroleum fuels in the present days coupled with alarming emissions and stringent emission regulations has led to growing attention towards use of alternative fuels like vegetable oils, alcoholic and gaseous fuels for diesel engine applications. Use of such fuels can ease the burden on the economy by curtailing the fuel imports. Diesel engines are highly efficient and the main problems associated with them is their high smoke and NOx emissions.  Hence there is an urgent need to promote the use of alternative fuels in place of high speed diesel (HSD) as substitute. India has a large agriculture base that can be used as a feed stock to obtain newer fuel which is renewable and sustainable. Accordingly Uppage oil methyl ester (UOME) biodiesel was selected as an alternative fuel. Use of biodiesels in diesel engines fitted with mechanical fuel injection systems has limitation on the injector opening pressure (300 bar). CRDI system can overcome this drawback by injecting fuel at very high pressures (1500-2500 bar) and is most suitable for biodiesel fuels which are high viscous. This paper presents the performance and emission characteristics of a CRDI diesel engine fuelled with UOME biodiesel at different injection timings and injection pressures. From the experimental evidence it was revealed that UOME biodiesel yielded overall better performance with reduced emissions at retarded injection timing of -10° BTDC in CRDI mode of engine operation.


Author(s):  
K Anand ◽  
R P Sharma ◽  
P S Mehta

Suitability of vegetable oil as an alternative to diesel fuel in compression ignition engines has become attractive, and research in this area has gained momentum because of concerns on energy security, high oil prices, and increased emphasis on clean environment. The experimental work reported here has been carried out on a turbocharged direct-injection multicylinder truck diesel engine using diesel fuel and jatropha methyl ester (JME)-diesel blends. The results of the experimental investigation indicate that an increase in JME quantity in the blend slightly advances the dynamic fuel injection timing and lowers the ignition delay compared with the diesel fuel. A maximum rise in peak pressure limited to 6.5 per cent is observed for fuel blends up to 40 per cent JME for part-load (up to about 50 per cent load) operations. However, for a higher-JME blend, the peak pressures decrease at higher loads remained within 4.5 per cent. With increasing proportion of JME in the blend, the peak pressure occurrence slightly advances and the maximum rate of pressure rise, combustion duration, and exhaust gas temperature decrease by 9 per cent, 15 per cent and 17 per cent respectively. Although the changes in brake thermal efficiencies for 20 per cent and 40 per cent JME blends compared with diesel fuel remain insignificant, the 60 per cent JME blend showed about 2.7 per cent improvement in the brake thermal efficiency. In general, it is observed that the overall performance and combustion characteristics of the engine do not alter significantly for 20 per cent and 40 per cent JME blends but show an improvement over diesel performance when fuelled with 60 per cent JME blend.


Sign in / Sign up

Export Citation Format

Share Document