scholarly journals Effect of different additives on ash fusion characteristic and mineral phase transformation of iron-rich Zhundong coal

Fuel ◽  
2022 ◽  
Vol 307 ◽  
pp. 121841
Author(s):  
Yibin Wang ◽  
Liangyu Li ◽  
Qiwei An ◽  
Houzhang Tan ◽  
Peng Li ◽  
...  
Author(s):  
Shiwei Li ◽  
Haoyu Li ◽  
Weiheng Chen ◽  
Jinhui Peng ◽  
Aiyuan Ma ◽  
...  

AbstractIrradiated roast treatment and the ammonia leaching processing were conducted to deal with the low-grade oxide zinc ores. The ZnCO3phase was hard to be attended, which was the reason for the low leaching rate of the complicated zinc ores. The mineral phase transformation of the ZnCO3phase was generated after the ores irradiated in the microwave at the temperature of 673 K. The irradiated ores generated more small particles, it was the reason that the leaching rate of the complicated zinc ores was increased. When the leaching processing of the irradiated roasted ores was conducted under the conditions of the total ammonia concentration of 6 mol/L, the liquid to solid phase ratio of 11:1, the leaching temperature of 298 K, the leaching time of 150 min and the stirring speed of 400 rpm, 88.3 % of zinc could be achieved, which was the maximum leaching rate of the irradiated ores.


2017 ◽  
Vol 51 ◽  
pp. 88-96 ◽  
Author(s):  
Caixia Yu ◽  
Jiao Gong ◽  
Fu-ling Yin ◽  
Jian Huang ◽  
Tian-lan Zhang ◽  
...  

Metals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 550
Author(s):  
Yunye Cao ◽  
Chengyan Xu ◽  
Yuechao Tian ◽  
Yanqing Hou

Nickel slag and blast furnace dust comprise a large part of solid waste produced by the metallurgical industry. In this study, a novel method of co-reduction roasting followed by grinding/magnetic separation was proposed to collaboratively reutilize nickel slag and blast furnace dust. The nickel slag was combined with blast furnace dust to produce a Ni-Fe alloy containing Cu component by using the proposed method. In addition, the blast furnace dust acted not only as a reductant but also as an Fe resource. Results in this work showed that 81.62% Fe and 89% Ni could be recovered from nickel slag and blast furnace dust, and a Ni-Fe alloy product with 93.03 wt% Fe, 0.86 wt% Ni, and 0.49 wt% Cu could be obtained under optimal conditions in this study. The effect of roasting temperature on phase transformation was characterized and analyzed by XRD and SEM-EDS. The results illustrated that roasting temperature was considered as the main influence to regulate the mineral phase transformation and microstructural change in roasted product. The minerals in the nickel slag finally transformed iron and augite from fayalite containing magnesium and magnetite after the disappearance/transformation of the mineral phase. The Fe-bearing minerals were first reduced in situ position of structure into metallic Fe particles and then grown into a Ni-Fe alloy with Cu of chain structure. The new structure, instead of the original structure, formed the homogeneous slag phase and Ni-Fe alloy with Cu component.


2018 ◽  
Vol 128 ◽  
pp. 446-459 ◽  
Author(s):  
Aneta Magdziarz ◽  
Marcin Gajek ◽  
Dorota Nowak-Woźny ◽  
Małgorzata Wilk

Author(s):  
Shiro Fujishiro

The Ti-6 wt.% Al-4 wt.% V commercial alloys have exhibited an improved formability at cryogenic temperature when the alloys were heat-treated prior to the tests. The author was interested in further investigating this unusual ductile behavior which may be associated with the strain-induced transformation or twinning of the a phase, enhanced at lower temperatures. The starting materials, supplied by RMI Co., Niles, Ohio were rolled mill products in the form of 40 mil sheets. The microstructure of the as-received materials contained mainly ellipsoidal α grains measuring between 1 and 5μ. The β phase formed an undefined grain boundary around the a grains. The specimens were homogenized at 1050°C for one hour, followed by aging at 500°C for two hours, and then quenched in water to produce the α/β mixed microstructure.


Author(s):  
J. Cooper ◽  
O. Popoola ◽  
W. M. Kriven

Nickel sulfide inclusions have been implicated in the spontaneous fracture of large windows of tempered plate glass. Two alternative explanations for the fracture-initiating behaviour of these inclusions have been proposed: (1) the volume increase which accompanies the α to β phase transformation in stoichiometric NiS, and (2) the thermal expansion mismatch between the nickel sulfide phases and the glass matrix. The microstructure and microchemistry of the small inclusions (80 to 250 μm spheres), needed to determine the cause of fracture, have not been well characterized hitherto. The aim of this communication is to report a detailed TEM and EDS study of the inclusions.


Sign in / Sign up

Export Citation Format

Share Document