scholarly journals Energy analysis and surrogate modeling for the green methanol production under dynamic operating conditions

Fuel ◽  
2022 ◽  
Vol 307 ◽  
pp. 121924
Author(s):  
Xiaoti Cui ◽  
Søren Knudsen Kær ◽  
Mads Pagh Nielsen
Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 536
Author(s):  
Kenneth A. Goldberg ◽  
Antoine Wojdyla ◽  
Diane Bryant

New, high-coherent-flux X-ray beamlines at synchrotron and free-electron laser light sources rely on wavefront sensors to achieve and maintain optimal alignment under dynamic operating conditions. This includes feedback to adaptive X-ray optics. We describe the design and modeling of a new class of binary-amplitude reflective gratings for shearing interferometry and Hartmann wavefront sensing. Compact arrays of deeply etched gratings illuminated at glancing incidence can withstand higher power densities than transmission membranes and can be designed to operate across a broad range of photon energies with a fixed grating-to-detector distance. Coherent wave-propagation is used to study the energy bandwidth of individual elements in an array and to set the design parameters. We observe that shearing operates well over a ±10% bandwidth, while Hartmann can be extended to ±30% or more, in our configuration. We apply this methodology to the design of a wavefront sensor for a soft X-ray beamline operating from 230 eV to 1400 eV and model shearing and Hartmann tests in the presence of varying wavefront aberration types and magnitudes.


2019 ◽  
Vol 7 (6) ◽  
pp. 1900047 ◽  
Author(s):  
Thomas Stiegler ◽  
Katharina Meltzer ◽  
Alexander Tremel ◽  
Manfred Baldauf ◽  
Peter Wasserscheid ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 750 ◽  
Author(s):  
Damien Guilbert ◽  
Gianpaolo Vitale

The main objective of this paper is to develop a dynamic emulator of a proton exchange membrane (PEM) electrolyzer (EL) through an equivalent electrical model. Experimental investigations have highlighted the capacitive effect of EL when subjecting to dynamic current profiles, which so far has not been reported in the literature. Thanks to a thorough experimental study, the electrical domain of a PEM EL composed of 3 cells has been modeled under dynamic operating conditions. The dynamic emulator is based on an equivalent electrical scheme that takes into consideration the dynamic behavior of the EL in cases of sudden variation in the supply current. The model parameters were identified for a suitable current interval to consider them as constant and then tested with experimental data. The obtained results through the developed dynamic emulator have demonstrated its ability to accurately replicate the dynamic behavior of a PEM EL.


Sign in / Sign up

Export Citation Format

Share Document