Synergistic effect of nickel nanoparticles with tetralin on the rheology and upgradation of extra heavy oil

Fuel ◽  
2022 ◽  
Vol 308 ◽  
pp. 122035
Author(s):  
Rohan M. Jadhav ◽  
Ganesh Kumar ◽  
N. Balasubramanian ◽  
Jitendra S. Sangwai
2013 ◽  
Vol 16 (03) ◽  
pp. 333-344 ◽  
Author(s):  
Y.. Hamedi Shokrlu ◽  
T.. Babadagli

Summary Studies on the application of transition-metal catalysts for heavy-oil or bitumen in-situ upgrading were conducted in the absence of a porous medium, mainly measuring the characteristics of heavy oil in reaction with metal ions at static conditions with the help of a magnetic stirrer. Metal species in ionic form are not soluble in oil phase. Therefore, metal particles, as inhomogeneous catalysts, are considered in this paper. Furthermore, dynamic tests in porous media are needed to clarify the injection possibility of the metal particles and their effect on in-situ upgrading of heavy oil. Injection of metal particles may deteriorate the recovery process by damaging porous media because of attractive forces such as van der Waals and electrostatic forces between particles and porous rock. A better understanding of these forces and their importance in the retention of particles is required. In this paper, the catalysis effect of pure nanometer-sized nickel during steam-injection application was compared with that of an industrial catalyst such as micron-sized Raney nickel. The changes in the viscosity, refractive index, and asphaltene content were measured after each test to analyze the catalysis effects. Nickel nanoparticles showed a better catalysis compared with Raney nickel. The approximate optimum concentration of the catalysts was determined. Then, the catalysis effect of nickel nanoparticles was studied in the presence of sandpack as a porous medium. The results showed accelerated catalysis in presence of the sands. Also, nickel nanoparticles improved the oil recovery factor. The next phase of this paper studies the injectivity and transport of nickel particles. The injected suspension was stabilized by use of xanthan gum polymer and ultrasonication. The effect of solution pH, which controls the magnitude of the repulsive electrostatic forces, was clarified. Stabilization of the metal particles’ suspension was studied at different pH values through zeta-potential measurements. Also, the zeta potential of the recovered suspensions was studied to confirm the stability of the suspension during travel through the porous medium. Depending on the size, particles carry different charges and have different settling velocities. Therefore, the stabilization pH and dispersant concentration were different from one sample to another. The results of the injectivity tests confirmed the lower retention and better injectivity of nanoparticles in comparison with micron-sized particles.


2020 ◽  
Vol 302 ◽  
pp. 71-78
Author(s):  
Nuttaya Sukgorn ◽  
Visittapong Yordsri ◽  
Chanchana Thanachayanon ◽  
Mati Horprathum ◽  
Nonchanutt Chudpooti ◽  
...  

Carbon nanotubes (CNTs) are considered as the most promising materials to solve the electromagnetic interference (EMI) issue. Various forms of CNTs including CNTs/polymer composites, metal nanoparticles-decorated CNTs and freestanding CNT buckypapers (CNT BPs) have been proposed to enhance shielding effectiveness. In this study, the synergistic effect of nickel nanoparticles (NPs) and relatively short CNTs for the enhancement of microwave shielding properties was investigated. CNT BPs were prepared by vacuum filtration of well-dispersed multi-walled CNTs and subsequently nickel was decorated on the CNT BPs (Ni/CNT) by pulsed DC sputtering technique with different deposition times of 0, 5, 10 and 15 min (hereinafter referred to as CNi0, CNi05, CNi10 and CNi15, respectively). The diameter of Ni/CNT increased from 8.74±0.53 to 72.5±3.2 nm and the conductivity improved from 9.57±0.87 to 12.57±0.59 S/cm when the nickel deposition time was 15 min. Nickel NPs were the mixed phases of nickel and nickel oxide with a dominant nickel phase. The shielding effectiveness at the frequency of 9.5 GHz achieved to -34.1 dB for CNi15. The enhancement of shielding effectiveness of CNi15 is attributed to the synergistic effect of CNTs and nickel NPs on wave dissipation


2014 ◽  
Vol 17 (03) ◽  
pp. 355-364 ◽  
Author(s):  
Yousef Hamedi-Shokrlu ◽  
Tayfun Babadagli

Summary The effect of nickel nanoparticles on in-situ upgrading of heavy oil (HO) during aquathermolysis and the effect of this process on the recovery through cyclic steam injection were studied. High-temperature experiments were conducted with a benchtop reactor to study the kinetics of the reactions among oil, water, and sandstones in the presence and absence of the nickel nanoparticles. Eighteen experiments were conducted at three different temperatures and at three different lengths of time, and the evolved hydrogen sulfide during the reaction was analyzed. The kinetic analysis showed that nickel nanoparticles reduce the activation energy of the reactions corresponding to the generation of hydrogen sulfide by approximately 50%. This reaction was the breakage of C-S bonds in the organosulfur compounds of the HO. The maximal catalysis effect was observed to be at a temperature of approximately 270°C. Also, the simulated-distillation gas-chromatography (GC) analysis of the oil sample, after the aquathermolysis reactions, confirmed the catalysis effect of nickel nanoparticles. According to this analysis, by catalytic process, the concentration of the components lighter than C30 increased whereas the concentration of heavier components decreased. Next, the effect of the catalytic aquathermolysis on the recovery factor of the steam-stimulation technique was studied. The stimulation experiments consisted of three injection/soaking/production phases. The results showed that the nickel nanoparticles increased the recovery factor by approximately 22% when the nanoparticles were injected with a cationic surfactant and xanthan-gum polymer. This increase of recovery was approximately 7% more than that of the experiment conducted with the surfactant and polymer only.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1849
Author(s):  
Jinjian Hou ◽  
Lingyu Sun

In recent years, unconventional oils have shown a huge potential for exploitation. Abundant reserves of carbonate asphalt rocks with a high oil content have been found; however, heavy oil and carbonate minerals have a high interaction force, which makes oil-solid separation difficult when using traditional methods. Although previous studies have used nanofluids or surfactant alone to enhance oil recovery, the minerals were sandstones. For carbonate asphalt rocks, there is little research on the synergistic effect of nanofluids and surfactants on heavy oil recovery by hot-water-based extraction. In this study, we used nanofluids and surfactants to enhance oil recovery from carbonate asphalt rocks synergistically based on the HWBE process. In order to explore the synergistic mechanism, the alterations of wettability due to the use of nanofluids and surfactants were studied. Nanofluids alone could render the oil-wet calcite surface hydrophilic, and the resulting increase in hydrophilicity of calcite surfaces treated with different nanofluids followed the order of SiO2 > MgO > TiO2 > ZrO2 > γ-Al2O3. The concentration, salinity, and temperature of nanofluids influenced the oil-wet calcite wettability, and for SiO2 nanofluids, the optimal nanofluid concentration was 0.2 wt%; the optimal salinity was 3 wt%; and the contact angle decreased as the temperature increased. Furthermore, the use of surfactants alone made the oil-wet calcite surface more hydrophilic, according to the following order: sophorolipid (45.9°) > CTAB (49°) > rhamnolipid (53.4°) > TX-100 (58.4°) > SDS (67.5°). The elemental analysis along with AFM and SEM characterization showed that nanoparticles were adsorbed onto the mineral surface, resulting in greater hydrophilicity of the oil-wet calcite surface, and the roughness was related to the wettability. Surfactant molecules could aid in the release of heavy oil from the calcite surface, which exposes the uncovered calcite surface to its surroundings; additionally, some surfactants adsorbed onto the oil-wet calcite surface, and the combined role made the oil-wet calcite surface hydrophilic. In conclusion, the study showed that hybrid nanofluids showed a better effect on wettability alteration, and the use of nanofluids and surfactants together resulted in synergistic alteration of oil-wet calcite surface wettability.


2014 ◽  
Vol 23 (4) ◽  
pp. 519-526 ◽  
Author(s):  
Dongmin Han ◽  
Nannan Sun ◽  
Jianwei Liu ◽  
Chunyi Li ◽  
Honghong Shan ◽  
...  

SPE Journal ◽  
2017 ◽  
Vol 23 (01) ◽  
pp. 145-156 ◽  
Author(s):  
Siyuan Yi ◽  
Tayfun Babadagli ◽  
Huazhou Andy Li

Summary Late cycles of cyclic steam stimulation (CSS) are characterized by a decreasing heavy-oil recovery and an increasing water cut. Nickel nanoparticles can be used to promote aquathermolysis reactions between water and heavy oil in steam-injection processes, thereby increasing the recovery factor (RF). In this paper, detailed investigations were performed to determine the optimal operational parameters and answers to the following questions: What is the optimal concentration of nickel nanoparticles for promoting aquathermolysis under high steam temperature? Can we improve oil recovery at lower steam temperatures with the presence of nickel nanoparticles? What effect does the penetration depth of nickel nanoparticles have on the final oil recovery? CSS experiments were conducted between temperatures of 150 and 220°C. Steam generated under these temperatures was injected into sandpacks saturated with Mexican heavy oil. Powder-form nickel nanoparticle was introduced into this process to boost the oil production. In an attempt to obtain the optimal concentration, different concentrations were tested. Next, oil sands without any nanoparticle additives were first added into the cylinder. Then, only one-third of the sandpack was mixed with nickel nanoparticles near the injection port. Experiments were executed to study the effects of temperature, nickel concentrations, and nanoparticle-penetration depth on the ultimate oil recovery and produced oil/water ratios after each cycle. Produced-oil quality and emulsion formation were evaluated with gas-chromatography (GC) analysis, viscosity measurements, saturates/asphaltenes/resins/aromatics (SARA) tests, and microscopic analysis of the effluents. Experimental results show that the best concentration of nickel nanoparticles, which gives the highest ultimate oil RF, is 0.20 wt% of initial oil in place (IOIP) under 220°C, whereas the nickel concentration of 0.05 wt% provides the highest RFs at the early stages. A lower temperature of 150°C provides a much-lower RF than 220°C, which is mainly because of a lower level of aquathermolysis reactions at 150°C. By analyzing the compositions of produced oil and gas samples with GC and SARA tests, we confirm that the major reaction mechanism during the aquathermolysis reaction is the breakage of the carbon/sulfur (C/S) bond; the nickel nanoparticles can act as catalyst for the aquathermolysis reaction; and the catalytic effect becomes less remarkable from cycle to cycle. One run of the experiment to test the effect of particle-penetration depth revealed that the nickel nanoparticles distributed near the injection port greatly contributed to the ultimate RF.


2018 ◽  
Vol 25 (3) ◽  
pp. 110
Author(s):  
I. A. Mustafin ◽  
T. M. Bayram-Ali ◽  
A. I. Salishev ◽  
E. V. Murtazin ◽  
O. M. Sudakova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document