scholarly journals A novel experimental nanofluid-assisted steam flooding (NASF) approach for enhanced heavy oil recovery

Fuel ◽  
2021 ◽  
pp. 122691
Author(s):  
Osamah A Alomair ◽  
Abdullah F Alajmi
2021 ◽  
Vol 888 ◽  
pp. 111-117
Author(s):  
Yi Zhao ◽  
De Yin Zhao ◽  
Rong Qiang Zhong ◽  
Li Rong Yao ◽  
Ke Ke Li

With the continuous exploitation of most reservoirs in China, the proportion of heavy oil reservoirs increases, and the development difficulty is greater than that of conventional reservoirs. In view of the important subject of how to improve the recovery factor of heavy oil reservoir, the thermal recovery technology (hot water flooding, steam flooding, steam assisted gravity drainage SAGD and steam huff and puff) and cold recovery technology (chemical flooding, electromagnetic wave physical flooding and microbial flooding) used in the development of heavy oil reservoir are summarized. The principle of action is analyzed, and the main problems restricting heavy oil recovery are analyzed The main technologies of heavy oil recovery are introduced from the aspects of cold recovery and hot recovery. Based on the study of a large number of literatures, and according to the development trend of heavy oil development, suggestions and prospects for the future development direction are put forward.


2017 ◽  
Author(s):  
Zhuangzhuang Wang ◽  
Zhaomin Li ◽  
Teng Lu ◽  
Qingwang Yuan ◽  
Jianping Yang ◽  
...  

2014 ◽  
Vol 577 ◽  
pp. 523-526 ◽  
Author(s):  
Meng Meng Ren ◽  
Shu Zhong Wang ◽  
Li Li Qian ◽  
Yan Hui Li

High-pressure direct-fired steam-gas generator (HDSG) is to produce multiplex thermal fluid (contains water, CO2, N2 etc.) through efficient direct-contact heat transfer, which would utilize the flue gas heat and reduce the gas emission caused by ordinary boiler. Furthermore, the multiplex thermal fluid can promote the heavy oil recovery by both steam flooding and miscible flooding. This paper introduced three kinds of HDSG: pressurized submerged combustion vaporization (PSCV), multiplex thermal fluid generator and supercritical hydrothermal combustor, which are different in work pressure and method of mixing water and flue gas. Then, we discussed the economic efficiency of HDSG used for heavy oil recovery and concluded that although the pressurization of fuel and oxygen would cost as much as the energy saved by utilizing the flue gas heat, using HDSG for heavy oil recovery has other incalculable benefits such as miscible flooding, waste water treatment and reduction of heat loss through injection well. Finally, we indicated that supercritical hydrothermal combustor will be the trendy of HDSG and pointed out the future research should be carried out on the heat and mass transfer characteristic of the combustion field when water presents and the combustion stability and completeness when pressure increases.


2011 ◽  
Vol 29 (6) ◽  
pp. 797-815 ◽  
Author(s):  
Benyu Su ◽  
Yasuhiro Fujimitsu

With an increasing tendency towards more demand for energy resources, the supply of energy as a focus of global strategy is attracting more and more attention from the world. However, on the one hand, conventional hydrocarbon resources are decreasing gradually, and therefore it is definitely an urgent task to search for renewable and replaceable resources at the present time. On the other hand, it has been proved that the total reserves of heavy oil are already up to 1105×108 tons around the world, which means that exploring heavy oil can be a beneficial supplement for alleviating the shortage of oil and gas. Moreover, it is noteworthy that because the heavy oil can be exploited by heated CO2, collecting and consuming CO2 during the production process will help to relieve global warming. In this study, we take the feasibility of heavy oil recovery by CO2 steam into consideration only from the viewpoint of geophysics. In the process of research, with the help of borehole-surface electric potential and cross-borehole electric potential, the entire procedures from heating heavy oil reservoir and optimizing the location of well to deciding the layer of perforation are exhibited completely. In the course of calculation, potential distributions corresponding to a point source of current are acquired by solving the Poisson equation using a direct and explicit finite difference technique for a lower half-space with 3-D distribution of conductivity. As for computation of a large sparse matrix, the technique of nonzero bandwidth storage and the Incomplete Cholesky Conjugate Gradient method are adopted. The consequences prove that with the assistance of cross-borehole electric potential combining with borehole-surface electric potential, the project of heavy oil recovery by CO2 steam is feasible and effective.


Author(s):  
Boni Swadesi ◽  
Suranto Ahmad Muraji ◽  
Aditya Kurniawan ◽  
Indah Widiyaningsih ◽  
Ratna Widyaningsih ◽  
...  

AbstractThermal injection methods are usually used for high viscosity oil. The results of previous studies showed that the combination of SF and SFF had the highest increase in oil recovery but still requires further study to determine the optimum strategy. This work is purposed to optimize the development scenario of a combined CSS-SF applied to a heavy oil field located in Sumatera, Indonesia. The recovery factor and NPV become the objective function, and several given and controlled parameters sensitivity toward the objective function are studied. A proxy model based on quadratic multivariate regression is developed to evaluate and get the desired objective function. The reservoir simulation of the thermal recovery process is done using CMG-STARS simulator. The overall workflow of scenario optimization is conducted using CMOST™ module. Optimum development scenario is obtained through maximization of the objective function. This work shows that the combination of proxy model development and optimization results in the best scenario of combined CSS-SF for heavy oil recovery.


Sign in / Sign up

Export Citation Format

Share Document