An experimental investigation in the formation damage mechanism of deposited coke in in-situ combustion process using nuclear magnetic resonance

Fuel ◽  
2021 ◽  
pp. 122703
Author(s):  
Yi-Bo Li ◽  
Shi-Xing Zhang ◽  
Chen Luo ◽  
Shuai Zhao ◽  
Bing Wei ◽  
...  
1982 ◽  
Vol 60 (9) ◽  
pp. 917-921 ◽  
Author(s):  
John W. Shriver ◽  
Brian D. Sykes

An enzymatic orthophosphate removal system is described which can be effectively used to continuously remove orthophosphate from biochemical samples. The phosphorolysis of nicotinamide riboside is catalyzed by calf spleen nucleoside phosphorylase to give ribose-1-PO4 and nicotinamide along with a proton. At pH 8 the production of ribose-1-PO4 from orthophosphate is essentially quantitative. This reaction can be monitored optically or by 31P nuclear magnetic resonance (NMR). Equations are given for determining the time required to remove a given amount of phosphate from a typical NMR sample with a known amount of nucleoside phosphorylase. The effects of a competing orthophosphate-producing reaction are considered.


RSC Advances ◽  
2017 ◽  
Vol 7 (61) ◽  
pp. 38367-38376 ◽  
Author(s):  
Chen Wang ◽  
Tiantai Li ◽  
Hui Gao ◽  
Jinsheng Zhao ◽  
Huazhou Andy Li

With nuclear magnetic resonance (NMR), a novel experimental study is conducted to reveal the pore-scale formation damage mechanism of tight sandstones caused by asphaltene precipitation during CO2 flooding.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1416 ◽  
Author(s):  
Mohamed Haouas

The employment of nuclear magnetic resonance (NMR) spectroscopy for studying crystalline porous materials formation is reviewed in the context of the development of in situ methodologies for the observation of the real synthesis medium, with the aim of unraveling the nucleation and growth processes mechanism. Both liquid and solid state NMR techniques are considered to probe the local environment at molecular level of the precursor species either soluble in the liquid phase or present in the reactive gel. Because the mass transport between the liquid and solid components of the heterogeneous system plays a key role in the synthesis course, the two methods provide unique insights and are complementary. Recent technological advances for hydrothermal conditions NMR are detailed and their applications to zeolite and related materials crystallization are illustrated. Achievements in the field are exemplified with some representative studies of relevance to zeolites, aluminophosphate zeotypes, and metal-organic frameworks.


Sign in / Sign up

Export Citation Format

Share Document