Gaseous and particulate emissions analysis using microalgae based dioctyl phthalate biofuel during cold, warm and hot engine operation

Fuel ◽  
2022 ◽  
Vol 312 ◽  
pp. 122965
Author(s):  
Faisal Lodi ◽  
Ali Zare ◽  
Priyanka Arora ◽  
Svetlana Stevanovic ◽  
Zoran D Ristovski ◽  
...  
2005 ◽  
Vol 19 (2) ◽  
pp. 418-425 ◽  
Author(s):  
A. Tsolakis ◽  
J. J. Hernandez ◽  
A. Megaritis ◽  
M. Crampton

Author(s):  
Tom Salt ◽  
Dale R. Tree ◽  
Chiwon Kim

The benefits of oxygen enhancement in conjunction with EGR on emissions were investigated in a single-cylinder direct injection diesel engine. Cylinder pressure, NOx, and particulate were measured for EGR sweeps with and without oxygen enhancement. In all cases, the total flow of oxygen to the cylinder was maintained constant. This was achieved by increasing cylinder pressure for typical EGR (N-EGR) and by adding oxygen to the intake stream for oxygen-enhanced EGR (O-EGR). The results show that O-EGR produced a substantially better combination of NOx and particulate than N-EGR. In the N-EGR cases, the EGR dilutes the oxidizer causing lower NOx and higher particulate. In O-EGR, flame temperature reduction leading to lower NOx is achieved by a combination of higher molar specific heats of CO2 and H2O and dilution. Particulate emissions decreased or remain constant with increasing O-EGR. In addition to the obvious challenge of providing a source oxygen to an engine, two operational challenges were encountered. First, as EGR was increased, the ratio of specific heats (Cp/Cv) of the cylinder intake charge decreased and decreased the compression temperature, causing significant changes in ignition delay. These changes were compensated for in the experiments by increasing intake temperature but would be challenging to manage in transient engine operation. Second, the increased water concentration in the exhaust created difficulties in the exhaust system and was suspected to have produced a water emulsion in the oil.


1988 ◽  
Vol 110 (3) ◽  
pp. 437-443 ◽  
Author(s):  
C. M. Urban ◽  
H. E. Mecredy ◽  
T. W. Ryan ◽  
M. N. Ingalls ◽  
B. T. Jett

The U.S. Department of Energy, Morgantown Energy Technology Center has assumed a leadership role in the development of coal-burning diesel engines. The motivation for this work is obvious when one considers the magnitude of the domestic reserves of coal and the widespread use of diesel engines. The work reported in this paper represents the preliminary engine experiments leading to the development of a coal-burning, medium-speed diesel engine. The basis of this development effort is a two-stroke, 900 rpm, 216-mm (8.5-in.) bore engine manufactured by Electro-Motive Division of General Motors Corporation. The engine, in a minimally modified form, has been operated for several hours on a slurry of 50 percent (by mass) coal in water. Engine operation was achieved in this configuration using a pilot injection of diesel fuel to ignite the main charge of slurry. A standard unit injector, slightly modified by increasing diametric clearances in the injector pump and nozzle tip, was used to inject the slurry. Under the engine operating conditions evaluated, the combustion efficiency of the coal and the NOx emissions were lower than, and the particulate emissions were higher than, corresponding diesel fuel results. These initial results, achieved without optimizing the system on the coal slurry, demonstrate the potential for utilizing coal slurry fuels.


Author(s):  
T. Salt ◽  
D. R. Tree ◽  
C. Kim

The benefits of oxygen enhancement in conjunction with EGR on emissions were investigated in a single-cylinder direct injection diesel engine. Cylinder pressure, NOx, and particulate were measured for EGR sweeps with and without oxygen enhancement. In all cases, the total flow of oxygen to the cylinder was maintained constant. This was achieved by increasing cylinder pressure for typical EGR (N-EGR) and by adding oxygen to the intake stream for oxygen-enhanced EGR (O-EGR). The results show that O-EGR produced a substantially better combination of NOx and particulate than N-EGR. In the N-EGR cases, the EGR dilutes the oxidizer causing lower NOx and higher particulate. In O-EGR, flame temperature reduction leading to lower NOx is achieved by a combination of higher molar specific heats of CO2 and H2O and dilution. Particulate emissions decreased or remain constant with increasing O-EGR. In addition to the obvious challenge of providing a source of oxygen to an engine, two operational challenges were encountered. First, as O-EGR was increased, the ratio of specific heats (Cp/Cv) of the cylinder intake charge decreased and decreased the compression temperature, causing significant changes in ignition delay. These changes were compensated for in the experiments by increasing intake temperature but would be challenging to manage in transient engine operation. Second, the increased water concentration in the exhaust created difficulties in the exhaust system and was suspected to have produced a water emulsion in the oil.


Author(s):  
Dan Bulzan ◽  
Bruce Anderson ◽  
Changlie Wey ◽  
Robert Howard ◽  
Edward Winstead ◽  
...  

The Aircraft Alternative Fuels Emissions experiment (AAFEX) was conducted at National Aeronautic and Space Administration (NASA) Dryden Flight Research Center (DFRC) Aircraft Operations Facility (DAOF) in Palmdale, California, during January and February 2009. The purpose was to systematically investigate the effect of alternative fuels on both gas-phase and particle emissions from a CFM56-2C1 engine on NASA’s DC-8 aircraft parked on the ground as functions of engine power, fuel composition, and exhaust plume age. Emissions parameters were measured at 6 engine power settings, ranging from idle to maximum thrust, in samples collected at 1, 30, and 145 meters (m) downstream of the exhaust plane as the aircraft burned three pure fuels and two fuel blends. The fuels included JP-8, two fuels produced using the Fischer-Tropsch process and 50/50 blends by volume of the F-T fuels with JP-8. The 1 m sampling rakes contained multiple gas and particle inlet probes and could also be traversed in order to measure the spatial variation of emissions across the engine exhaust plane. The #2 inboard engine on the left side always burned JP-8 while the #3 inboard right side engine was fueled with the various fuels and fuel blends. In addition, emissions from the Auxiliary Power Unit (APU) were also evaluated with both JP-8 and one pure F-T fuel. Both gaseous and particulate emissions are presented. Results show that the synthetic fuels reduced pollutant emissions while having relatively little effect on engine operation or performance.


2021 ◽  
Author(s):  
Kimmo Korhonen ◽  
Thomas Bjerring Kristensen ◽  
John Falk ◽  
Vilhelm B. Malmborg ◽  
Axel Eriksson ◽  
...  

Abstract. We studied ice-nucleating abilities of particulate emissions from a modern heavy-duty diesel engine using three different types of fuel. The polydisperse particle emissions were sampled during engine operation and introduced to a continuous-flow diffusion chamber (CFDC) instrument at a constant relative humidity RHwater = 110 %, and temperature was ramped between −43 °C and −32 °C (T-scan). The tested fuels were EN 590 compliant low-sulfur fossil diesel, hydrotreated vegetable oil (HVO) and rapeseed methyl ester (RME), and all were investigated without blending. Sampling was carried out at different stages in the engine exhaust after-treatment system, with and without simulated atmospheric processing using an oxidation flow reactor. In addition to ice-nucleation experiments, we used supportive instrumentation to characterize the emission particles and present six different physical and chemical properties of them. We found that the studied emissions were poor ice-nucleators and substitution of fossil diesel with renewable fuels, using different emission after-treatment systems and photochemical aging of total exhaust had only little effect on their ice-nucleating abilities.


Author(s):  
R. Stevenson

A study has been made of the morphology and crystallography of particulate emissions from indirect injection diesel engines. This particulate matter consists substantially of carbon (although hydrocarbons can be extracted with solvents). Samples were collected in a diluted exhaust stream on amorphous carbon films and examined in a JEM-200C electron microscope operated in the TEM mode with an accelerating voltage of 200 KV.The morphology of the diesel particles, as shown in Fig. 1, markedly resembles carbon blacks and consists of an agglomeration of quasispherical subunits arranged in chains or clusters. Only limited changes in morphology were observed as the number of subunits in the particle increased (although larger particles tended to be more cluster-like than the extended chain shown in Fig. 1). However, a dramatic effect of the number of subunits was observed on the character of the diffraction pattern. Smaller particles yielded a diffraction pattern consisting of very diffuse rings typical of turbostratic carbon; the diffraction patterns from the larger particles, however, although qualitatively similar, exhibited much sharper and less diffuse ring patterns.


Author(s):  
Petar Kazakov ◽  
Atanas Iliev ◽  
Emil Marinov

Over the decades, more attention has been paid to emissions from the means of transport and the use of different fuels and combustion fuels for the operation of internal combustion engines than on fuel consumption. This, in turn, enables research into products that are said to reduce fuel consumption. The report summarizes four studies of fuel-related innovation products. The studies covered by this report are conducted with diesel fuel and usually contain diesel fuel and three additives for it. Manufacturers of additives are based on already existing studies showing a 10-30% reduction in fuel consumption. Comparative experimental studies related to the use of commercially available diesel fuel with and without the use of additives have been performed in laboratory conditions. The studies were carried out on a stationary diesel engine СМД-17КН equipped with brake КИ1368В. Repeated results were recorded, but they did not confirm the significant positive effect of additives on specific fuel consumption. In some cases, the factors affecting errors in this type of research on the effectiveness of fuel additives for commercial purposes are considered. The reasons for the positive effects of such use of additives in certain engine operating modes are also clarified.


Sign in / Sign up

Export Citation Format

Share Document