Synthesis of TixSn1-xO2 mixed metal oxide for copper catalysts as high-efficiency NH3 selective catalytic oxidation

Fuel ◽  
2022 ◽  
Vol 314 ◽  
pp. 123061
Shiwei Ge ◽  
Xiaoqing Liu ◽  
Jun Liu ◽  
Hao Liu ◽  
Haiyan Liu ◽  
Catalysts ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 354
Khadijah H. Alharbi ◽  
Ali Alsalme ◽  
Ahmed Bader A. Aloumi ◽  
Mohammed Rafiq H. Siddiqui

Oxidation is an important organic transformation, and several catalysts have been reported for this conversion. In this study, we report the synthesis of mixed metal oxide CuxZnyO, which is prepared by a coprecipitation method by varying the molar ratio of Cu and Zn in the catalytic system. The prepared mixed metal oxide CuxZnyO was evaluated for catalytic performance for toluene oxidation. Various parameters of the catalytic evaluation were studied in order to ascertain the optimum condition for the best catalytic performance. The results indicate that aging time, calcination temperature, reaction temperature, and feed rate influence catalytic performance. It was found that the catalyst interfaces apparently enhanced catalytic activity for toluene oxidation. The XRD diffractograms reveal the crystalline nature of the mixed metal oxide formed and also confirm the coexistence of hexagonal and monoclinic crystalline phases. The catalyst prepared by aging for 4 h and calcined at 450 °C was found to be the best for the conversion of toluene to benzaldehyde while the reactor temperature was maintained at 250 °C with toluene fed into the reactor at 0.01 mL/min. The catalyst was active for about 13 h.

Periasamy Anbu ◽  
Subash C.B. Gopinath ◽  
Kandasamy Saravanakumar ◽  
Sekar Vijayakumar ◽  
Santheraleka Ramanathan ◽  

1994 ◽  
Vol 210 (1-2) ◽  
pp. 177-184 ◽  
K.M. Cruickshank ◽  
F.P. Glasser

2021 ◽  
Vol 4 ◽  
pp. 100085 ◽  
Karthik Kannan ◽  
D Radhika ◽  
D. Gnanasangeetha ◽  
L. Sivarama Krishna ◽  
K Gurushankar

Akash P. Bhat ◽  
Ananda J. Jadhav ◽  
Chandrakant R. Holkar ◽  
Dipak V. Pinjari

Sign in / Sign up

Export Citation Format

Share Document