Host plant and environment influence community assembly of High Arctic root-associated fungal communities

2012 ◽  
Vol 5 (4) ◽  
pp. 409-418 ◽  
Author(s):  
Kei E. Fujimura ◽  
Keith N. Egger
2019 ◽  
Author(s):  
Coline Deveautour ◽  
Suzanne Donn ◽  
Sally Power ◽  
Kirk Barnett ◽  
Jeff Powell

Future climate scenarios predict changes in rainfall regimes. These changes are expected to affect plants via effects on the expression of root traits associated with water and nutrient uptake. Associated microorganisms may also respond to these new precipitation regimes, either directly in response to changes in the soil environment or indirectly in response to altered root trait expression. We characterised arbuscular mycorrhizal (AM) fungal communities in an Australian grassland exposed to experimentally altered rainfall regimes. We used Illumina sequencing to assess the responses of AM fungal communities associated with four plant species sampled in different watering treatments and evaluated the extent to which shifts were associated with changes in root traits. We observed that altered rainfall regimes affected the composition but not the richness of the AM fungal communities, and we found distinctive communities in the increased rainfall treatment. We found no evidence of altered rainfall regime effects via changes in host physiology because none of the studied traits were affected by changes in rainfall. However, specific root length was observed to correlate with AM fungal richness, while concentrations of phosphorus and calcium in root tissue and the proportion of root length allocated to fine roots were correlated to community composition. Our study provides evidence that climate change and its effects on rainfall may influence AM fungal community assembly, as do plant traits related to plant nutrition and water uptake. We did not find evidence that host responses to altered rainfall drive AM fungal community assembly in this grassland ecosystem.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Ernest D. Osburn ◽  
Frank O. Aylward ◽  
J. E. Barrett

AbstractLand use change has long-term effects on the structure of soil microbial communities, but the specific community assembly processes underlying these effects have not been identified. To investigate effects of historical land use on microbial community assembly, we sampled soils from several currently forested watersheds representing different historical land management regimes (e.g., undisturbed reference, logged, converted to agriculture). We characterized bacterial and fungal communities using amplicon sequencing and used a null model approach to quantify the relative importance of selection, dispersal, and drift processes on bacterial and fungal community assembly. We found that bacterial communities were structured by both selection and neutral (i.e., dispersal and drift) processes, while fungal communities were structured primarily by neutral processes. For both bacterial and fungal communities, selection was more important in historically disturbed soils compared with adjacent undisturbed sites, while dispersal processes were more important in undisturbed soils. Variation partitioning identified the drivers of selection to be changes in vegetation communities and soil properties (i.e., soil N availability) that occur following forest disturbance. Overall, this study casts new light on the effects of historical land use on soil microbial communities by identifying specific environmental factors that drive changes in community assembly.


2020 ◽  
Vol 69 (3) ◽  
pp. 193-229
Author(s):  
Miloš Černý ◽  
Michael von Tschirnhaus ◽  
Kaj Winqvist

Abstract First records of 151 species in the family Agromyzidae are presented for 40 countries and major islands in the Palaearctic Region (Russia being split into four subregions): from Afghanistan (1 sp.), Albania (15 spp.), Algeria (1 sp.), Andorra (2 spp.), Armenia (4 spp.), Austria (14 spp.), Balearic Islands (4 spp.), Canary Islands (2 spp.), China - Palaearctic part (2 spp.), Corsica (5 spp.), Crete (6 spp.), Croatia (16 spp.), Czech Republic (4 spp.), Dodekanese Islands incl. Rhodes (5 spp.), Egypt (1 sp.), European Russia (2 spp.), Finland (12 spp.), France (1 sp.), Georgia (1 sp.), Germany (14 spp.), Great Britain (2 spp.), Greece (4 spp.), Iceland (1 sp.), Iran (8 spp.), Israel (1 sp.), Italy (12 spp.), Jordan (6 spp.), Kyrgyzstan (6 spp.), Lithuania (2 spp.), Macedonia (2 spp.), Mongolia (2 spp.), Morocco (6 spp.), Netherlands (1 sp.), Norway (3 spp.), Oman (1 sp.), Poland (1 sp.), West Siberia (1 sp.), East Sibiria (3 spp.), Kamchatka (5 spp.), Sardinia (1 sp.), Slovakia (4 spp.), South Korea (13 spp.), Spain (10 spp.), Sweden (7 spp.), Switzerland (5 spp.) and Turkey (1 sp.). For a few species morphological details or plant genera from the collecting localities are added as possible host plants. Phytomyza parvicella (Coquillett, 1902) exhibits an extremely disjunct distribution, occurring in the high Arctic from Alaska to west Greenland and on the highest mountains of Germany and Poland. Other rare species with Boreo-alpine disjunctions are recorded. Cerodontha (Cerodontha) phragmitophila Hering, 1935 reached a tiny artificial patch of its host plant within the Sahara sand desert. The thermophilic mediterranean Phytoliriomyza pectoralis (Becker, 1908) was detected on the Swedish sun-blessed island Öland. Chromatomyia obscuriceps (Hendel, 1936) (emerged from Triticum crop) is specified as a valid species occurring from Iceland to Kamchatka. A new definition for Chromatomyia nigra (Meigen, 1830) sensu stricto is presented. The American Amauromyza (Cephalomyza) abnormalis (Malloch, 1913), a possible agent against the harmful neophyte Amaranthus retroflexus, was detected for the first time in the Palaearctic Region. Gnaphalium is attributed as a first detected host plant genus of Phytoliriomyza venustula Spencer, 1976.


Botany ◽  
2014 ◽  
Vol 92 (4) ◽  
pp. 303-311 ◽  
Author(s):  
Steven W. Kembel ◽  
Rebecca C. Mueller

The aerial surface of plants, known as the phyllosphere, represents a widespread and diverse habitat for microbes, but the fungal communities colonizing the surface of leaves are not well characterized, and how these communities are assembled on hosts is unknown. We used high-throughput sequencing of fungal communities on the leaves of 51 tree species in a lowland tropical rainforest in Panama to examine the influence of host plant taxonomy and traits on the fungi colonizing the phyllosphere. Fungal communities on leaves were dominated by the phyla Ascomycota (79% of all sequences), Basidiomycota (11%), and Chytridiomycota (5%). Host plant taxonomic identity explained more than half of the variation in fungal community composition across trees, and numerous host functional traits related to leaf morphology, leaf chemistry, and plant growth and mortality were significantly associated with fungal community structure. Differences in fungal biodiversity among hosts suggest that individual tree species support unique fungal communities and that diverse tropical forests also support a large number of fungal species. Similarities between phyllosphere and decomposer communities suggest that fungi inhabiting living leaves may have significant roles in ecosystem functioning in tropical forests.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Tao Zhang ◽  
Neng Fei Wang ◽  
Yu Qin Zhang ◽  
Hong Yu Liu ◽  
Li Yan Yu

2020 ◽  
Vol 4 (3) ◽  
pp. 217-224 ◽  
Author(s):  
M. Amine Hassani ◽  
Ezgi Özkurt ◽  
Sören Franzenburg ◽  
Eva H. Stukenbrock

Domestication has led to substantial changes in plant physiology. How this anthropogenic intervention has contributed in altering the wheat microbiota is not well understood. Here, we investigated the role of ecological selection, drift, and dispersal in shaping the bacterial and fungal communities associated with domesticated wheat Triticum aestivum and two wild relatives, T. boeoticum and T. urartu. Our study shows that the bacterial and fungal microbiota of wild and domesticated wheat species follow distinct community assembly patterns. Further, we revealed a more prominent role of neutral processes in the assembly of the microbiota of domesticated wheat and propose that domestication has relaxed selective processes in the assembly of the wheat microbiota. [Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .


Sign in / Sign up

Export Citation Format

Share Document