Heat transfer performance of an energy-saving heat removal device with uni-directional porous copper for divertor cooling

2018 ◽  
Vol 136 ◽  
pp. 518-521 ◽  
Author(s):  
Kio Takai ◽  
Kohei Yuki ◽  
Kazuhisa Yuki ◽  
Risako Kibushi ◽  
Noriyuki Unno ◽  
...  
2009 ◽  
Vol 1188 ◽  
Author(s):  
Liping Zhang ◽  
David Mullen ◽  
Kevin Lynn ◽  
Yuyuan Zhao

AbstractThe heat transfer coefficients of porous copper fabricated by the lost carbonate sintering (LCS) process with porosity range from 57% to 82% and pore size from 150 to 1500 μm have been experimentally determined in this study. The sample was attached to the heat plate and assembled into a forced convection system using water as the coolant. The effectiveness of the heat removal from the heat plate through the porous copper-water system was tested under different water flow rates from 0.3 to 2.0 L/min and an input heat flux of 1.3 MW/m2. Porosity has a large effect on the heat transfer performance and the optimum porosity was found to be around 62%. Pore size has a much less effect on the heat transfer performance compared to porosity. High water flow rates enhanced the heat transfer performance for all the samples.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Wei Zhao ◽  
Xiang Zhang ◽  
Chunlai Tian ◽  
Zhan Gao

As the heat transfer surface in the passive containment cooling system, the anticorrosion coating (AC) of steel containment vessel (CV) must meet the requirements on heat transfer performance. One of the wall surface ACs with simple structure, high mechanical strength, and well hydrophobic characteristics, which is conductive to form dropwise condensation, is significant for the heat removal of the CV. In this paper, the grooved structures on silicon wafers by lithographic methods are systematically prepared to investigate the effects of microstructures on the hydrophobic property of the surfaces. The results show that the hydrophobicity is dramatically improved in comparison with the conventional Wenzel and Cassie-Baxter model. In addition, the experimental results are successfully explained by the interface state effect. As a consequence, it is indicated that favorable hydrophobicity can be obtained even if the surface is with lower roughness and without any chemical modifications, which provides feasible solutions for improving the heat transfer performance of CV.


2015 ◽  
Vol 1779 ◽  
pp. 39-44 ◽  
Author(s):  
Jan Mary Baloyo ◽  
Yuyuan Zhao

ABSTRACTThe heat transfer coefficients of homogeneous and hybrid micro-porous copper foams, produced by the Lost Carbonate Sintering (LCS) process, were measured under one-dimensional forced convection conditions using water coolant. In general, increasing the water flow rate led to an increase in the heat transfer coefficients. For homogeneous samples, the optimum heat transfer performance was observed for samples with 60% porosity. Different trends in the heat transfer coefficients were found in samples with hybrid structures. Firstly, for horizontal bilayer structures, placing the high porosity layer by the heater gave a higher heat transfer coefficient than the other way round. Secondly, for integrated vertical bilayer structures, having the high porosity layer by the water inlet gave a better heat transfer performance. Lastly, for segmented vertical bilayer samples, having the low porosity layer by the water inlet offered the greatest heat transfer coefficient overall, which is five times higher than its homogeneous counterpart.


Author(s):  
Ariel Cruz Diaz ◽  
Gerardo Carbajal

Abstract This study presents the effects of adding an array of protrusions in a microchannel for heat transfer enhancement. The presence of mini-channels increases the overall heat transfer area and boosts the mixing development near the solid-fluid interaction; therefore, it can remove more heat than conventional mini-channels without protuberances. A numerical study proved that protuberances in a mini-channel increase the heat transfer performance by disturbing the relative fluid motion near the solid wall. The numerical simulation was performed with three different protuberances arrays: aligned, staggered, and angular. Each array consists of a thin flat plate with a hemispherical shape; the working fluid and the solid materials were water and copper. The study also includes the effect of different Reynolds numbers: 1,000, 1,500, and 2,000. Three heat inputs were applied in the numerical simulation; these were 1W, 3W, and 5W. The study was compared with a simple microchannel with non-protuberances to analyze the microchannel performance regarding heat removal and pressure drop. For heat transfer performance, the best array was the staggering array with a maximum heat removal increase of 5.26 percent. In terms of pressure drop performance, the best array was the aligned array, with a maximum increase of 34.73 percent.


2018 ◽  
Vol 2018 (0) ◽  
pp. 0175
Author(s):  
Yuki Abe ◽  
Kazuhisa Yuki ◽  
Yoshiaki Sato ◽  
Risako Kibushi ◽  
Noriyuki Unno ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document