scholarly journals Analysis of the Genetic Structure and Diversity of Upland Cotton Groups in Different Planting Areas Based on SNP Markers

Gene ◽  
2021 ◽  
pp. 146042
Author(s):  
Jungduo Wang ◽  
Zeliang Zhang ◽  
Zhaolong Gong ◽  
Yajun Liang ◽  
Xiantao Ai ◽  
...  
2019 ◽  
Vol 99 (1) ◽  
pp. 12-21
Author(s):  
Gönül Cömertpay ◽  
Ephrem Habyarimana ◽  
Faheem Shehzad Baloch ◽  
Hüseyin Güngör ◽  
Tevrican Dokuyucu ◽  
...  

Cultivated oat (Avena sativa L. and Avena byzantina Koch) is native to Turkey, a secondary center of oat diversity. Oat breeding has received less attention relative to other cereals. In this work, the diversity of oat landraces collected from different regions of Turkey as well as obtained from different gene banks was investigated using 3293 high quality SNP markers. Expected heterozygosity (Hs), observed heterozygosity (Ho), inbreeding coefficient (Fis), and overall genetic diversity (Ht) of the oat gene pool were 0.22, 0.01, 0.96, and 0.38, respectively. The value of the genetic differentiation (Fst) metric for genetic structure was 0.41 and indicated that kinship was more of a determinant for population structure than the geographical provenance. The populations from different geographical regions shared a great proportion of genetic diversity. Clustering using model-based STRUCTURE, principal coordinates (PCoA), and neighbour-joining (NJ) algorithms were mostly comparable except for five discrepantly clustered accessions in NJ and PCoA relative to STRUCTURE, which can be attributed to the relatively reduced resolution power in the NJ and PCoA approaches. SNP markers partitioned all oat accessions into four main groups (A, B, C, and D) with 10 unclassified accessions. Some landraces were identical based on genetic distance and can represent duplications in gene banks. The data presented in this work represent the initial results on genetic diversity as investigated in Turkish oat, and are an important resource for systematicians, geneticists, and breeders interested in Turkish oat germplasm. These results are expected to open new opportunities for further studies in oat genomics and cultivar development.


2021 ◽  
Author(s):  
Zeliang Zhang ◽  
Junduo Wang ◽  
Zhaolong Gong ◽  
Yajun Liang ◽  
Xiantao Ai ◽  
...  

Genetic diversity, kinship and population genetic structure analyses of Gossypium hirsutum germplasm can provide a better understanding of the origin and evolution of G. hirsutum biodiversity. In this study, 1313331 SNP molecular markers were used to construct a phylogenetic tree of each sample using MEGAX, to perform population structure analysis by ADMIXTURE software and principal component analysis (PCA) by EIGENSOFT software, and to estimate relatedness using SPAGeDi. ADMIXTURE software divided the experimental cotton population into 16 subgroups, and the Gossypium hirsutum samples could be roughly clustered according to source place, but there were some overlapping characteristics among samples. The experimental cotton population was divided into six groups according to source to calculate the genetic diversity index (H), and the obtained value (0.306) was close to that for germplasm collected by others in China. Cluster 4 had a relatively high genetic diversity level (0.390). The degrees of genetic differentiation within the experimental cotton population groups were low (the population differentiation indexes ranged from 0.02368 to 0.10664). The genetic distance among cotton accessions varied from 0.000332651 to 0.562664014, with an average of 0.25240429. The results of this study may provide a basis for mining elite alleles and using them for subsequent association analysis.


Mycologia ◽  
2021 ◽  
pp. 1-10
Author(s):  
María Belén Pildain ◽  
Paula Marchelli ◽  
María Marta Azpilicueta ◽  
Cristian Starik ◽  
Carolina Barroetaveña

2013 ◽  
Vol 43 (6) ◽  
pp. 978-984 ◽  
Author(s):  
Vanice Dias Oliveira ◽  
Allivia Rouse Carregosa Rabbani ◽  
Ana Veruska Cruz da Silva ◽  
Ana da Silva Lédo

This research had as objective to characterize genetically individuals of physic nut cultivated in experimental areas in Sergipe, Brazil by means of RAPD molecular markers. Leaves of 40 individuals were collected and DNA was isolated using CTAB 2% method. Were used 30 primers RAPD for DNA amplification, and this data was used to estimate the genetic similarity among the pairs of individuals, using Jaccard coefficient, and group them out for the UPGMA method. Also, the genetic structure and diversity of the populations were assessed using AMOVA. Of the 100 fragments generated, 29 of were polymorphic. A similarity average of 0.54 among the individuals was found and the amplitude similarities varied from 0.18 to 1.00. One of them (U5) was unit clusters and formed by the most divergent individuals. AMOVA indicated that there is more variation within (63%) the population. In conclusion, it was possible verify genetic variability in physic nut using RAPD markers at these experimental areas.


Sign in / Sign up

Export Citation Format

Share Document