The influence of microbial communities, management, and soil texture on soil organic matter chemistry

Geoderma ◽  
2009 ◽  
Vol 150 (3-4) ◽  
pp. 278-286 ◽  
Author(s):  
A. Stuart Grandy ◽  
Michael S. Strickland ◽  
Christian L. Lauber ◽  
Mark A. Bradford ◽  
Noah Fierer
Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 779
Author(s):  
Václav Voltr ◽  
Ladislav Menšík ◽  
Lukáš Hlisnikovský ◽  
Martin Hruška ◽  
Eduard Pokorný ◽  
...  

The content of organic matter in the soil, its labile (hot water extractable carbon–HWEC) and stable (soil organic carbon–SOC) form is a fundamental factor affecting soil productivity and health. The current research in soil organic matter (SOM) is focused on individual fragmented approaches and comprehensive evaluation of HWEC and SOC changes. The present state of the soil together with soil’s management practices are usually monitoring today but there has not been any common model for both that has been published. Our approach should help to assess the changes in HWEC and SOC content depending on the physico-chemical properties and soil´s management practices (e.g., digestate application, livestock and mineral fertilisers, post-harvest residues, etc.). The one- and multidimensional linear regressions were used. Data were obtained from the various soil´s climatic conditions (68 localities) of the Czech Republic. The Czech farms in operating conditions were observed during the period 2008–2018. The obtained results of ll monitored experimental sites showed increasing in the SOC content, while the HWEC content has decreased. Furthermore, a decline in pH and soil´s saturation was documented by regression modelling. Mainly digestate application was responsible for this negative consequence across all soils in studied climatic regions. The multivariate linear regression models (MLR) also showed that HWEC content is significantly affected by natural soil fertility (soil type), phosphorus content (−30%), digestate application (+29%), saturation of the soil sorption complex (SEBCT, 21%) and the dose of total nitrogen (N) applied into the soil (−20%). Here we report that the labile forms (HWEC) are affected by the application of digestate (15%), the soil saturation (37%), the application of mineral potassium (−7%), soil pH (−14%) and the overall condition of the soil (−27%). The stable components (SOM) are affected by the content of HWEC (17%), soil texture 0.01–0.001mm (10%), and input of organic matter and nutrients from animal production (10%). Results also showed that the mineral fertilization has a negative effect (−14%), together with the soil depth (−11%), and the soil texture 0.25–2 mm (−21%) on SOM. Using modern statistical procedures (MRLs) it was confirmed that SOM plays an important role in maintaining resp. improving soil physical, biochemical and biological properties, which is particularly important to ensure the productivity of agroecosystems (soil quality and health) and to future food security.


2021 ◽  
pp. 108302
Author(s):  
Gerrit Angst ◽  
Jan Pokorný ◽  
Carsten W. Mueller ◽  
Isabel Prater ◽  
Sebastian Preusser ◽  
...  

1996 ◽  
Vol 21 (1) ◽  
pp. 352-352
Author(s):  
Stanley R. Swier

Abstract The trial was conducted 10 May on a golf course rough, Amherst, NH. Plots were 10 X 10 ft, replicated 4 times, in a RCB design. Merit WP was applied in 4 gal water/1000 ft2 with a watering, can. Merit G granules were applied with a homemade salt shaker. Treatments were irrigated with 0.5 inch water after application. Plots were rated 30 Sep by counting the number of live grubs per 1 ft2. Conditions at the time of treatment were: air temperature 70°F; wind, 3 MPH; sky, clear; soil temperature, 1 inch, 60°F; thatch depth, 0.5 inch soil pH, 5.4; slope 0%; soil texture, silt loam, 47% sand, 50% silt, 3% clay; soil organic matter, 6.9%; soil moisture, 21.8%.


2021 ◽  
Author(s):  
Malte Ortner ◽  
Michael Seidel ◽  
Sebastian Semella ◽  
Thomas Udelhoven ◽  
Michael Vohland ◽  
...  

Abstract. Soil organic matter (SOM) is an indispensable component of terrestrial ecosystems. Soil organic carbon (SOC) dynamics are influenced by a number of well-known abiotic factors such as clay content, soil pH or pedogenic oxides. These parameters interact with each other and vary in their influence on SOC depending on local conditions. To investigate the latter, the dependence of SOC accumulation on parameters and parameter combinations was statistically assessed that vary on a local scale depending on parent material, soil texture class and land use. To this end, topsoils were sampled from arable and grassland sites in southwestern Germany at four regions with different soil parent material. Principal component analysis (PCA) revealed a distinct clustering of data according to parent material and soil texture that varied largely between the local sampling regions, while land use explained PCA results only to a small extent. The obtained global and the different local clusters of the dataset were further analyzed for the relationships between SOC and mineral phase parameters in order to assess specific parameter combinations explaining SOC and its labile fractions. Analyses were focused on soil parameters that are known as possible predictors for the occurrence and stabilization of SOC (e.g. fine silt plus clay and pedogenic oxides). Regarding the global dataset, we found significant correlations between SOC and its labile fractions hot water-extractable C (HWEC) and microbial biomass C (MBC), respectively and the predictors, yet correlation coefficients were partially low. Mixed effect models were used to identify specific parameter combinations that significantly explain SOC and its labile fractions of the different clusters. Comparing measured and mixed effect models-predicted SOC values revealed acceptable to very good regression coefficients (R² = 0.41–0.91). Thereby, the predictors and predictor combinations clearly differed between models obtained for the whole data set and the different cluster groups. At a local scale site specific combinations of parameters explained the variability of organic matter notably better, while the application of global models to local clusters resulted in less sufficient performance. Independent from that, the overall explained variance generally decreased in the order SOC > HWEC > MBC, showing that labile fractions depend less on soil properties than on organic matter input and turnover in soil.


2013 ◽  
Vol 30 (4) ◽  
pp. 347-361 ◽  
Author(s):  
Affi Jeanne Bongoua-Devisme ◽  
Aurélie Cebron ◽  
Koffi Emmanuel Kassin ◽  
Gballou René Yoro ◽  
Christian Mustin ◽  
...  

Forests ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 4
Author(s):  
Ed-Haun Chang ◽  
Isheng Jason Tsai ◽  
Shih-Hao Jien ◽  
Guanglong Tian ◽  
Chih-Yu Chiu

Biogeographic separation has been an important cause of faunal and floral distribution; however, little is known about the differences in soil microbial communities across islands. In this study, we determined the structure of soil microbial communities by analyzing phospholipid fatty acid (PLFA) profiles and comparing enzymatic activities as well as soil physio-chemical properties across five subtropical granite-derived and two tropical volcanic (andesite-derived) islands in Taiwan. Among these islands, soil organic matter, pH, urease, and PLFA biomass were higher in the tropical andesite-derived than subtropical granite-derived islands. Principal component analysis of PLFAs separated these islands into three groups. The activities of soil enzymes such as phosphatase, β-glucosidase, and β-glucosaminidase were positively correlated with soil organic matter and total nitrogen. Redundancy analysis of microbial communities and environmental factors showed that soil parent materials and the climatic difference are critical factors affecting soil organic matter and pH, and consequently the microbial community structure.


Sign in / Sign up

Export Citation Format

Share Document