Soil organic matter prevails over heavy metal pollution and vegetation as a factor shaping soil microbial communities at historical Zn–Pb mining sites

Chemosphere ◽  
2020 ◽  
Vol 240 ◽  
pp. 124922 ◽  
Author(s):  
Anna M. Stefanowicz ◽  
Paweł Kapusta ◽  
Szymon Zubek ◽  
Małgorzata Stanek ◽  
Marcin W. Woch
Forests ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 4
Author(s):  
Ed-Haun Chang ◽  
Isheng Jason Tsai ◽  
Shih-Hao Jien ◽  
Guanglong Tian ◽  
Chih-Yu Chiu

Biogeographic separation has been an important cause of faunal and floral distribution; however, little is known about the differences in soil microbial communities across islands. In this study, we determined the structure of soil microbial communities by analyzing phospholipid fatty acid (PLFA) profiles and comparing enzymatic activities as well as soil physio-chemical properties across five subtropical granite-derived and two tropical volcanic (andesite-derived) islands in Taiwan. Among these islands, soil organic matter, pH, urease, and PLFA biomass were higher in the tropical andesite-derived than subtropical granite-derived islands. Principal component analysis of PLFAs separated these islands into three groups. The activities of soil enzymes such as phosphatase, β-glucosidase, and β-glucosaminidase were positively correlated with soil organic matter and total nitrogen. Redundancy analysis of microbial communities and environmental factors showed that soil parent materials and the climatic difference are critical factors affecting soil organic matter and pH, and consequently the microbial community structure.


2020 ◽  
Author(s):  
Theresa Böckle ◽  
Yuntao Hu ◽  
Jörg Schnecker ◽  
Wolfgang Wanek

<p>The activities of soil microorganisms drive soil carbon (C) and nutrient cycling and therefore play an important role in local and global terrestrial C dynamics and nutrient cycles. Unfortunately, soil microbial activities have been defined mostly by measurements of heterotrophic respiration, potential enzyme activities, or net N processes. However, soil microbial activities comprise more than just catabolic processes such as respiration and N mineralization. Recently anabolic processes (biosynthesis and growth) and the partitioning between anabolic and catabolic processes in soil microbial metabolism have gained more attention as they control microbial soil organic matter formation. Understanding the controls on these processes allows an improved understanding of the key roles that soil microbes play in organic matter decomposition (catabolic processes) and soil organic matter sequestration (anabolic processes leading to growth, biomass and necromass formation), and their potential feedback to global change.</p><p>Generally, there are two approaches to study the metabolism of soil microbial communities: First, position-specific isotope labeling is a tool that allows the tracing of <sup>13</sup>C-atoms in organic molecules on their way through the network of metabolic pathways and second, metabolomics and fluxomics approaches can enable disentangling the highly complex metabolic networks of microbial communities, which however have rarely (metabolomics) or never (fluxomics) been applied to soils.</p><p>In this study we developed a targeted soil metabolomics approach coupled to <sup>13</sup>C isotope tracing (fluxomics), in which we extract, purify and measure a preselected set of key metabolites. Our aim was to cover the wide spectrum of soil microbial metabolic pathways based on the analysis of biomarker metabolites being unique to specific metabolic pathways such as  glycolysis/gluconeogenesis (e.g. fructose 1,6-bisphosphate), the pentose phosphate pathway (ribose-5-phosphate), the citric acid cycle (α-ketoglutaric acid), purine and pyrimidine metabolism (UMP, AMP, allantoin), amino acid biosynthesis and degradation (10proteinogenic amino acids and their intermediates), the urea cycle (ornithine), amino sugar metabolism (N-Acetyl-D-Glucosamine and –muramic acid) and the shikimate pathway (shikimate). The minute concentrations of these primary metabolites are extracted from soils by 1 M KCl including 5 % chloroform, salts are removed by freeze-drying, methanol dissolution and cation-/anion-exchange chromatography and the metabolites and their isotopomers quantified by UPLC-Orbitrap mass spectrometry. To cover the wide range of metabolites, compound separations are performed by  hydrophilic interaction chromatography (HILIC) for metabolites such as amino acids, (poly-)amines, nucleosides and nucleobases and by Ion chromatography (IC), to separate charged molecules like amino sugars, sugar phosphates and organic acids.  Here we will show fluxomics results from a laboratory soil warming experiment where we added <sup>13</sup>C-glucose to a temperate forest soil as a proof of concept.</p>


Author(s):  
Xingqing Zhao ◽  
Jian Huang ◽  
Xuyan Zhu ◽  
Jinchun Chai ◽  
Xiaoli Ji

The objectives of this study were to understand the characteristics of heavy metal pollution caused by mining activities on the two sides of the Shun’an river and the response of soil microorganisms to the habitats by different contamination levels and vegetation. This paper selected soil samples from the banks of the Shun’an River near the Shizishan mining area, which is at the left of the river, in Tongling, Anhui Province, China. Using Illumina MiSeq 2500 technology, we analyzed the relationship between environmental factors and microbial communities. As the distance from the mining area increased, the heavy metal comprehensive pollution and potential risk value decreased. Additionally, the pollution severity and risk value of the left bank, where the mining area lies, were generally higher than those of the right bank. Because the symmetric sampling points on both banks of the river had similar planting types, their environmental factors and microbial community structure were similar and clustered. However, under different vegetation, the paddy soils tended to have a higher nutrient content and community richness and diversity than the vegetable fields or the abandoned land. It was found that soil microbial communities in this area were mostly affected by pH and Nemerow pollution index (PN). The pH significantly affected the abundance and structure of most microorganisms. In addition, Proteobacteria, Acidobacteria, and Bacteroidetes had significant tolerance to Zn, Pb, and Cd. By exploring the potential use of these tolerant microorganisms, we seek to provide strains and the theoretical basis for the bioremediation of areas contaminated by heavy metal.


mBio ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jianwei Zhang ◽  
Youzhi Feng ◽  
Meng Wu ◽  
Ruirui Chen ◽  
Zhongpei Li ◽  
...  

ABSTRACT Microbial communities, coupled with substrate quality and availability, regulate the stock (formation versus mineralization) of soil organic matter (SOM) in terrestrial ecosystems. However, our understanding of how soil microbes interact with contrasting substrates influencing SOM quantity and quality is still very superficial. Here, we used thermodynamic theory principles and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) to evaluate the linkages between dissolved organic matter (DOM [organic substrates in soil that are readily available]), thermodynamic quality, and microbial communities. We investigated soils from subtropical paddy ecosystems across a 1,000-km gradient and comprising contrasting levels of SOM content and nutrient availability. Our region-scale study suggested that soils with a larger abundance of readily accessible resources (i.e., lower Gibbs free energy) supported higher levels of microbial diversity and higher SOM content. We further advocated a novel phylotype-level microbial classification based on their associations with OM quantities and qualities and identified two contrasting clusters of bacterial taxa: phylotypes that are highly positively correlated with thermodynamically favorable DOM and larger SOM content versus those which are associated with less-favorable DOM and lower SOM content. Both groups are expected to play critical roles in regulating SOM contents in the soil. By identifying the associations between microbial phylotypes of different life strategies and OM qualities and quantities, our study indicates that thermodynamic theory can act as a proxy for the relationship between OM and soil microbial communities and should be considered in models of soil organic matter preservation. IMPORTANCE Microbial communities are known to be important drivers of organic matter (OM) accumulation in terrestrial ecosystems. However, despite the importance of these soil microbes and processes, the mechanisms behind these microbial-SOM associations remain poorly understood. Here, we used the principles of thermodynamic theory and novel Fourier transform ion cyclotron resonance mass spectrometry techniques to investigate the links between microbial communities and dissolved OM (DOM) thermodynamic quality in soils across a 1,000-km gradient and comprising contrasting nutrient and C contents. Our region-scale study provided evidence that soils with a larger amount of readily accessible resources (i.e., lower Gibbs free energy) supported higher levels of microbial diversity and larger SOM content. Moreover, we created a novel phylotype-level microbial classification based on the associations between microbial taxa and DOM quantities and qualities. We found two contrasting clusters of bacterial taxa based on their level of association with thermodynamically favorable DOM and SOM content. Our study advances our knowledge on the important links between microbial communities and SOM. Moreover, by identifying the associations between microbial phylotypes of different life strategies and OM qualities and quantities, our study indicates that thermodynamic theory can act as a proxy for the relationship between OM and soil microbial communities. Together, our findings support that the association between microbial species taxa and substrate thermodynamic quality constituted an important complement explanation for soil organic matter preservation.


RSC Advances ◽  
2017 ◽  
Vol 7 (30) ◽  
pp. 18421-18427 ◽  
Author(s):  
Haiming Wu ◽  
Li Lin ◽  
Guangzhu Shen ◽  
Ming Li

The risk of heavy metals to aquatic ecosystems was paid much attention in recent years, however, the knowledge on effects of heavy metals on dissolved organic matter (DOM) released byMicrocystiswas quite poor, especially in eutrophic lakes.


Sign in / Sign up

Export Citation Format

Share Document