Constant curvature models in sub-Riemannian geometry

2019 ◽  
Vol 138 ◽  
pp. 241-256 ◽  
Author(s):  
D. Alekseevsky ◽  
A. Medvedev ◽  
J. Slovak
2019 ◽  
Vol 39 ◽  
pp. 71-85
Author(s):  
AKM Nazimuddin ◽  
Md Showkat Ali

In this paper, we compute the Christoffel Symbols of the first kind, Christoffel Symbols of the second kind, Geodesics, Riemann Christoffel tensor, Ricci tensor and Scalar curvature from a metric which plays a fundamental role in the Riemannian geometry and modern differential geometry, where we consider MATLAB as a software tool for this implementation method. Also we have shown that, locally, any Riemannian 3-dimensional metric can be deformed along a directioninto another metricthat is conformal to a metric of constant curvature GANIT J. Bangladesh Math. Soc.Vol. 39 (2019) 71-85


1993 ◽  
Vol 4 (13) ◽  
Author(s):  
Elisha Falbel ◽  
Jose Veloso ◽  
Jose Antonio Verderesi

2020 ◽  
Vol 23 (3) ◽  
pp. 306-311
Author(s):  
Yu. Kurochkin ◽  
Dz. Shoukavy ◽  
I. Boyarina

The immobility of the center of mass in spaces of constant curvature is postulated based on its definition obtained in [1]. The system of two particles which interact through a potential depending only on the distance between particles on a three-dimensional sphere is considered. The Hamilton-Jacobi equation is formulated and its solutions and trajectory equations are found. It was established that the reduced mass of the system depends on the relative distance.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
James Kohout ◽  
Melanie Rupflin ◽  
Peter M. Topping

AbstractThe harmonic map energy of a map from a closed, constant-curvature surface to a closed target manifold can be seen as a functional on the space of maps and domain metrics. We consider the gradient flow for this energy. In the absence of singularities, previous theory established that the flow converges to a branched minimal immersion, but only at a sequence of times converging to infinity, and only after pulling back by a sequence of diffeomorphisms. In this paper, we investigate whether it is necessary to pull back by these diffeomorphisms, and whether the convergence is uniform as {t\to\infty}.


Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 280
Author(s):  
Loriano Bonora ◽  
Rudra Prakash Malik

This article, which is a review with substantial original material, is meant to offer a comprehensive description of the superfield representations of BRST and anti-BRST algebras and their applications to some field-theoretic topics. After a review of the superfield formalism for gauge theories, we present the same formalism for gerbes and diffeomorphism invariant theories. The application to diffeomorphisms leads, in particular, to a horizontal Riemannian geometry in the superspace. We then illustrate the application to the description of consistent gauge anomalies and Wess–Zumino terms for which the formalism seems to be particularly tailor-made. The next subject covered is the higher spin YM-like theories and their anomalies. Finally, we show that the BRST superfield formalism applies as well to the N=1 super-YM theories formulated in the supersymmetric superspace, for the two formalisms go along with each other very well.


Author(s):  
Andreas Bernig ◽  
Dmitry Faifman ◽  
Gil Solanes

AbstractThe recently introduced Lipschitz–Killing curvature measures on pseudo-Riemannian manifolds satisfy a Weyl principle, i.e. are invariant under isometric embeddings. We show that they are uniquely characterized by this property. We apply this characterization to prove a Künneth-type formula for Lipschitz–Killing curvature measures, and to classify the invariant generalized valuations and curvature measures on all isotropic pseudo-Riemannian space forms.


The paper is a continuation of the last paper communicated to these 'Proceedings.' In that paper, which we shall refer to as the first paper, a more general expression for space curvature was obtained than that which occurs in Riemannian geometry, by a modification of the Riemannian covariant derivative and by the use of a fifth co-ordinate. By means of a particular substitution (∆ μσ σ = 1/ψ ∂ψ/∂x μ ) it was shown that this curvature takes the form of the second order equation of quantum mechanics. It is not a matrix equation, however but one which has the character of the wave equation as it occurred in the earlier form of the quantum theory. But it contains additional terms, all of which can be readily accounted for in physics, expect on which suggested an identification with energy of the spin.


Sign in / Sign up

Export Citation Format

Share Document