Late Mesozoic Huangbeiling S-type granite in the East Qinling Orogen, China: Geochronology, petrogenesis and implications for tectonic evolution

Geochemistry ◽  
2021 ◽  
pp. 125857
Author(s):  
Zesheng Qian ◽  
Fan Yang ◽  
Chao Liu ◽  
Fei Xue ◽  
M. Santosh ◽  
...  
Lithos ◽  
2016 ◽  
Vol 266-267 ◽  
pp. 435-452 ◽  
Author(s):  
Yuxiao Chen ◽  
He Li ◽  
Weidong Sun ◽  
Trevor Ireland ◽  
Xufeng Tian ◽  
...  

2020 ◽  
pp. 1-17
Author(s):  
Zhendong Wang ◽  
Yuanyuan Zhang ◽  
Xiangjiang Yu ◽  
Zhaojie Guo

Abstract The Duobagou Permian–Triassic granites of the Dunhuang orogenic belt are of great importance in understanding the tectonic evolution of the southernmost Central Asian Orogenic Belt. LA-ICP-MS U–Pb zircon ages indicate that Permian–Triassic granitic intrusions from the Duobagou area formed at 276–274 Ma and 246 ± 1 Ma. These granites have high SiO2, Na2O and K2O, but low Al2O3, CaO and MgO contents and belong mainly to the high-K calc-alkaline I-type granite series. Based on whole-rock geochemistry and Sr–Nd and zircon Hf isotopes, the Duobagou Permian–Triassic granites were dominantly derived from the partial melting of lower continental crust formed during late Palaeoproterozoic to Mesoproterozoic times in a post-collisional extensional setting. Permian granites with zircon ϵHf(t) values of −5.4 to +3.1 and Hf model ages of TDM2 = 1.14–1.70 Ga indicate the involvement of a mantle component in their petrogenesis. Triassic granites with higher zircon ϵHf(t) values (+0.5 to +3.8) and TDM2 = 1.08–1.31 Ga suggest more juvenile sources caused by a greater contribution of mantle-derived melts, indicating a significant crustal growth. Regional extension from lithospheric delamination and heating from asthenospheric upwelling were proposed to have triggered the partial melting of lower crust, resulting in the generation of the Permian–Triassic magmatism. This may have been the mechanism for the significant crustal growth during Permian and Triassic times in the southernmost Central Asian Orogenic Belt.


2020 ◽  
Vol 133 (1-2) ◽  
pp. 325-346 ◽  
Author(s):  
Yuejun Wang ◽  
Yuzhi Zhang ◽  
Xin Qian ◽  
Vongpaseuth Senebouttalath ◽  
Yang Wang ◽  
...  

Abstract In order to verify the early Paleozoic accretionary assemblage in the Indochina interior and constrain the Prototethyan tectonic evolution in Southeast Asia, this study presents a set of new U-Pb geochronological, elemental, and Sr-Nd-Pb-Hf-O isotopic data for the fifty-two representative granitoids in South Laos. The granitoids from the Kontum terrane, Tam Ky-Phuoc Son tectonic zone, and southern Truong Son igneous zone in South Laos yield the crystallization ages of 464–485 Ma, 455–471 Ma, and 427–446 Ma, respectively, with a northerly younging trend within the Indochina interior. They are mainly monzogranite with A/CNK = 0.96–1.99 and K2O > Na2O, which are marked by enrichment in large-ion lithophile elements and depletion in high field strength elements with remarkable Nb-Ta, Sr-P, and Ti negative anomalies. Their initial 87Sr/86Sr ratios range from 0.70510 to 0.71559, εNd(t) from −9.5 to −3.0, (206Pb/204Pb)i from 18.65 to 19.72, (207Pb/204Pb)i from 15.66 to 15.80, and (208Pb/ 204Pb)i from 38.84 to 39.79. The corresponding zircon ɛHf(t) and δ18O values are in the range of −10.6 to +1.0 and 6.88‰ to 8.94‰, respectively. In addition, their Sr-Nd-Pb and Hf-O isotopic compositions are generally similar with those of time-equivalent granitoids in South Tibet and SW Yunnan, China, and synchronous mafic-intermediate igneous rocks in South Laos, but distinctive from those of the supracrustal sedimentary-derived South China Paleozoic granite and Lincang-Sukhothai S-type granite. The early Paleozoic granitoids in South Laos might have originated from a mixed source of the wedge-derived juvenile crust coupled with supracrustal materials. All these data synthetically suggest the southward subduction of the Tam Ky-Phuoc Son Ocean and the northerly on-growing Ordo-Silurian accretionary orogenesis within the previously defined “single-ancient” Indochina block. The assemblage of the Indochina block might initiate at ca. 430 Ma in the Silurian and terminate in the Early-Middle Devonian.


2012 ◽  
Vol 114 (3-4) ◽  
pp. 236-249 ◽  
Author(s):  
Kai-Jun Zhang ◽  
Yu-Xiu Zhang ◽  
Xian-Chun Tang ◽  
Bin Xia

2009 ◽  
Vol 51 (3) ◽  
pp. 216-251 ◽  
Author(s):  
L.‐M. Li ◽  
M. Sun ◽  
G.‐F. Xing ◽  
G.‐C. Zhao ◽  
M.‐F. Zhou ◽  
...  

2016 ◽  
Vol 30 ◽  
pp. 1-5 ◽  
Author(s):  
Yunpeng Dong ◽  
Inna Safonova ◽  
Tao Wang

Sign in / Sign up

Export Citation Format

Share Document