A metamorphic devolatilization model for the genesis of the Baiyun gold deposit in the North China Craton: A novel Fe-S isotopes perspective

2022 ◽  
Author(s):  
Shuaijie Liu ◽  
Bin Chen ◽  
Jiahao Zheng ◽  
Yafei Wu ◽  
Chuang Bao ◽  
...  
2010 ◽  
Vol 2 (4) ◽  
Author(s):  
Ye Cao ◽  
Shengrong Li ◽  
Meijuan Yao ◽  
Huafeng Zhang

AbstractThermoluminescence (TL) of monomineralic separates have been widely used in various geosciences fields in order to trace the thermal history and aid in prospecting for gold deposits. Quartz is a ubiquitous mineral in the Shihu gold deposit, which is situated in the northern part of the Taihang orogenic belt in the North China craton (NCC). The deposit is hosted by ductile-brittle faults within an Archean metamorphic core complex of the Fuping Group. This deposit is characterized by gold-bearing quartz-polymetallic sulfides and quartz veins. New TL results have been obtained for quartz, in which four type-TL glow curves were identified. The gold-bearing quartz present type III glow curves that consist of two peak glow curves at the middle and high peak temperatures with the similar TL intensity. In addition, the cross-sections of peak temperatures and TL intensity highlight the valuable area where the Au-bearing quartz present weak TL intensity and low-middle peak temperatures. Our results significantly enhance the usefulness of quartz in metallogenic studies of the North China craton and as an indicator mineral in mineral exploration of the Taihang Mountain region.


2021 ◽  
pp. 104593
Author(s):  
Jian-Guo Yuan ◽  
Hua-Feng Zhang ◽  
Ying Tong ◽  
Jian-Feng Gao ◽  
Rong-Ge Xiao

2020 ◽  
Vol 57 (3) ◽  
pp. 307-330 ◽  
Author(s):  
Xihui Cheng ◽  
Jiuhua Xu ◽  
Fuquan Yang ◽  
Guorui Zhang ◽  
Hui Zhang ◽  
...  

The Wulong lode gold deposit is located in the Liaoning Province, northeast part of North China Craton. Gold ore bodies are mainly hosted in the Late Jurassic granite and structurally controlled by northeast-trending faults. Gold occurs in disseminated and auriferous quartz–sulfide veins and veinlets within hydrothermally altered rocks. Mineralization can be divided into three stages: (1) quartz–pyrite stage, (2) quartz–polymetallic sulfides stage, and (3) quartz–carbonate stage. Gold formed mainly in the middle stage. Quartz formed in the two earlier stages contains three compositional types of fluid inclusions, i.e., pure CO2, CO2–H2O and NaCl–H2O, but the late-stage minerals only contain NaCl–H2O inclusions. The inclusions in quartz formed in the early, main, and late stages yield total homogenization temperatures of 317–383 °C, 260–380 °C and 159–234 °C, respectively, with salinities of 5.14–9.44, 2.95–6.20, 1.23–4.34 wt% NaCl equivalent, respectively. Trapping pressures estimated from CO2–H2O inclusions are 200–390 MPa in the main stage. Fluid boiling and immiscibility caused rapid precipitation of sulfides and gold. Through immiscibility and inflow of meteoric water, the ore-forming fluid system evolved from CO2-rich to CO2-poor in composition, and from magmatic to meteoric, as indicated by δ18Owater values (4.5‰–7.3‰). The carbon (−12.2‰ to −11.5‰), sulfur (0.9‰–2.6‰), and lead isotope (207Pb/204Pb of 15.606–15.618) compositions suggest the host rocks to be a significant source of ore metals. Integrating the data obtained from the studies including regional geology, ore geology, fluid inclusion, and C–H–O–S–Pb isotope geochemistry, we conclude that the Wulong deposit is a decratonization gold deposit formed during lithospheric thinning associated with destruction of the North China Craton triggered by the subduction of the Paleo-Pacific Oceanic plate in the Early Cretaceous.


Minerals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 606
Author(s):  
Zhu ◽  
Wang ◽  
Pang ◽  
Zhen ◽  
Yang ◽  
...  

The Liyuan gold deposit, located in the central Taihang Mountains, North China Craton, forms an important part of the Taihang polymetallogenic belt. The origin of ore-forming fluids and the genesis of this deposit remains controversial. In this paper, fluid inclusions (FIs) microthermometry and H-O-S isotopes analysis are conducted to constrain the origin of ore-forming fluids and genesis. The main findings are as follows: (1) Three hydrothermal metallogenic stages are identified: Quartz–pyrite, quartz–polymetallic sulfide, and quartz–carbonate stages; (2) three types of primary FIs are recognized: CO2-aqueous (type I), pure CO2 (type II), and aqueous FIs (type III); (3) ore-forming fluids are characterized by medium–low temperatures, medium–low salinity, and H2O-CO2-NaCl ± CH4 system; (4) H-O isotopes indicate that the ore-forming fluids mainly have a magmatic origin and late-stage ore fluids mixed with meteoric water; (5) S isotopes further confirm that the sulfides most likely have a deep magma source with variation caused by changes in oxygen fugacity; and (6) fluid immiscibility and water–rock interactions are considered to be the two main mechanisms of gold deposition. Due to the lack of large granite bodies exposed in this ore district, we infer that the fluids of gold deposit and quartz porphyry may have both been exsolved from a concealed granite pluton at deeper locations, and we further propose that Liyuan gold deposit is typical magmatic–hydrothermal gold deposits.


Sign in / Sign up

Export Citation Format

Share Document