Sphingosine kinase 1 knockout alleviates hepatic ischemia/reperfusion injury by attenuating inflammation and oxidative stress in mice

2019 ◽  
Vol 18 (3) ◽  
pp. 255-265 ◽  
Author(s):  
Guang-Hui Qiang ◽  
Zhong-Xia Wang ◽  
An-Lai Ji ◽  
Jun-Yi Wu ◽  
Yin Cao ◽  
...  
PPAR Research ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Jie Zhang ◽  
Ping Cheng ◽  
Weiqi Dai ◽  
Jie Ji ◽  
Liwei Wu ◽  
...  

Hepatic ischemia and reperfusion injury is characterized by hepatocyte apoptosis, impaired autophagy, and oxidative stress. Fenofibrate, a commonly used antilipidemic drug, has been verified to exert hepatic protective effects in other cells and animal models. The purpose of this study was to identify the function of fenofibrate on mouse hepatic IR injury and discuss the possible mechanisms. A segmental (70%) hepatic warm ischemia model was established in Balb/c mice. Serum and liver tissue samples were collected for detecting pathological changes at 2, 8, and 24 h after reperfusion, while fenofibrate (50 mg/kg, 100 mg/kg) was injected intraperitoneally 1 hour prior to surgery. Compared to the IR group, pretreatment of FF could reduce the inflammatory response and inhibit apoptosis and autophagy. Furthermore, fenofibrate can activate PPAR-α, which is associated with the phosphorylation of AMPK.


2016 ◽  
Vol 38 (4) ◽  
pp. 1631-1642 ◽  
Author(s):  
Zhijie Xu ◽  
Jingui Yu ◽  
Jianbo Wu ◽  
Feng Qi ◽  
Huanliang Wang ◽  
...  

Background: Propofol and sevoflurane are widely used in clinical anesthesia, and both have been reported to exert a protective effect in organ ischemia/reperfusion (IR). This study aims to investigate and compare the effects of propofol and sevoflurane on liver ischemia/reperfusion and the precise molecular mechanism. Methods and Materials: Rats were randomized into four groups: the sham group, I/R group, propofol treatment group (infused with 1% propofol at 500 µg· kg-1· min-1), and sevoflurane treatment group (infused with 3% (2 L/min) sevoflurane). The liver ischemia/reperfusion model was used to evaluate the hepatoprotective effect on ischemic injury. Liver enzyme leakage, liver cytokines and histopathological examination were used to evaluate the extent of hepatic ischemia/reperfusion injury. Oxidative stress was investigated by evaluating the levels of Malondialdehyde(MDA), Superoxide Dismutase(SOD) and NO. The terminal dexynucleotidyl transferase(TdT)-mediated dUTP nick end labeling (TUNEL) assay and western blot were applied to detect apoptosis in the ischemic liver tissue and its mechanism. Results: Both propofol and sevoflurane attenuated the extent of hepatic ischemia/reperfusion injury which is evident from the hisopathological studies and alterations in liver enzymes such as AST and LDH by inhibiting Nuclear factor kappa B (NFκB) activation and subsequent alterations in inflammatory cytokines interleukin-1(IL-1), interleukin-6(IL-6), tumor necrosis factor-alpha (TNF-a) and increased IL10 release. Propofol exhibited a similar protective effect and a lower IL-1 release, while sevoflurane decreased TNF-a leakage more significantly. Meanwhile, oxidative stress was attenuated by reduced MDA and NO and elevated SOD release. The expression of antiapoptotic protein Bcl-2 and Bcl-xl were enhanced while that of apoptotic protein Bax and Bak were reduced by both propofol and sevoflurane to regulate hepatic apoptosis. In addition, propofol downregulated the phosphorylation of AKT and Bad protein, while sevoflurane downregulated the phosphorylation of p38. In addition, Both the treatments had no effect on the expression of AKT, Bad and p38. Conclusion: Both propofol and sevoflurane can protect the liver from ischemia/reperfusion injury by modulating the inflammatory responses reducing oxidative stress and liver apoptosis.


2021 ◽  
Author(s):  
Tingting Li ◽  
Qingsong Chen ◽  
Jiangwen Dai ◽  
Zuotian Huang ◽  
Yunhai Luo ◽  
...  

Abstract Hepatic ischemia reperfusion injury (IRI) is a major factor affecting the prognosis of liver transplantation through a series of severe cell death and inflammatory responses. MicroRNA-141-3p (miR-141-3p) has been reported to be associated with hepatic steatosis and other liver diseases. However, the potential role of miR-141-3p in hepatic IRI is currently unknown. In the present study, we found that miR-141-3p levels were negatively correlated with alanine aminotransferase (ALT)/aspartate aminotransferase (AST) in liver transplantation patients. The results demonstrated that miR-141-3p was decreased in mouse liver tissue after hepatic IRI in mice and in hepatocytes after hypoxia/reoxygenation (H/R). Overexpression of miR-141-3p directly decreased Kelch-like ECH-associated protein 1 (Keap1) levels and attenuated cell apoptosis in vivo and in vitro, while inhibition of miR-141-3p facilitated apoptosis. Further experiments revealed that overexpression of miR-141-3p also attenuated oxidative stress-induced damage in hepatocytes under H/R conditions. Taken together, our results indicate that miR-141-3p plays a major role in hepatic IRI through the Keap1 signaling pathway, and the present study suggests that miR-141-3p might have a protective effect on hepatic IRI to some extent.


2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
Yihan Zhang ◽  
Dongdong Yuan ◽  
Weifeng Yao ◽  
Qianqian Zhu ◽  
Yue Liu ◽  
...  

Aim. To investigate whether hyperglycemia will aggravate hepatic ischemia reperfusion injury (HIRI) and the underlying mechanisms.Methods. Control and streptozotocin-induced diabetic Sprague-Dawley rats were subjected to partial hepatic ischemia reperfusion. Liver histology, transferase, inflammatory cytokines, and oxidative stress were assessed accordingly. Similarly, BRL-3A hepatocytes were subjected to hypoxia/reoxygenation (H/R) after high (25 mM) or low (5.5 mM) glucose culture. Cell viability, reactive oxygen species (ROS), and activation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-κB) were determined.Results. Compared with control, diabetic rats presented more severe hepatic injury and increased hepatic inflammatory cytokines and oxidative stress. HIRI in diabetic rats could be ameliorated by pretreatment of N-acetyl-L-cysteine (NAC) or apocynin. Excessive ROS generation and consequent Nrf2 and NF-κB translocation were determined after high glucose exposure. NF-κB translocation and its downstream cytokines were further increased in high glucose cultured group after H/R. While proper regulation of Nrf2 to its downstream antioxidases was observed in low glucose cultured group, no further induction of Nrf2 pathway by H/R after high glucose culture was identified.Conclusion. Hyperglycemia aggravates HIRI, which might be attributed to chronic oxidative stress and inflammation and potential malfunction of antioxidative system.


Sign in / Sign up

Export Citation Format

Share Document