scholarly journals Skeletal muscle index is a useful tool for the nutritional assessment of patients with pancreatic and hepatobiliary cancer

HPB ◽  
2019 ◽  
Vol 21 ◽  
pp. S875-S876
Author(s):  
I. Lidoriki ◽  
D. Schizas ◽  
E. Mpaili ◽  
A. Michalinos ◽  
M. Vailas ◽  
...  
HPB ◽  
2019 ◽  
Vol 21 ◽  
pp. S536
Author(s):  
I. Lidoriki ◽  
D. Schizas ◽  
E. Mpaili ◽  
A. Michalinos ◽  
M. Vailas ◽  
...  

Nutrients ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 2647
Author(s):  
Francisco José Sánchez-Torralvo ◽  
Ignacio Ruiz-García ◽  
Victoria Contreras-Bolívar ◽  
Inmaculada González-Almendros ◽  
María Ruiz-Vico ◽  
...  

Our objective was to evaluate the clinical application of third lumbar vertebra (L3)-computer tomography (CT)-determined sarcopenia as a marker of muscle mass in cancer inpatients diagnosed with malnutrition according to the Global Leadership Initiative on Malnutrition (GLIM) criteria and to establish its association with 6-month mortality. Methods: This was an observational, prospective study in patients from an inpatient oncology unit. We performed a nutritional assessment according to GLIM criteria, including muscle cross-sectional area at L3 by CT and skeletal muscle index (SMI). Six-month mortality was evaluated. Results: A total of 208 patients were included. The skeletal muscle cross-sectional area at L3 was 136.2 ± 32.5 cm2 in men and 98.1 ± 21.2 cm2 in women. The SMI was 47.4 ± 12.3 cm2/m2 in men and 38.7 ± 8.3 cm2/m2 in women. Sarcopenia (low SMI) was detected in 59.6% of the subjects. Using SMI as a marker of low muscle mass in application of GLIM criteria, we found 183 (87.9%) malnourished patients. There were 104 deaths (50%) at 6 months. The deceased patients had a lower skeletal muscle cross-sectional area (112.9 ± 27.9 vs. 126.1 ± 37.8 cm2; p = 0.003) and a lower SMI (41.3 ± 9.5 vs. 45.7 ± 12.9 cm2/m2; p = 0.006). An increased risk of 6-month mortality was found in malnourished patients according to GLIM criteria using SMI (HR 2.47; 95% confidence interval 1.07–5.68; p = 0.033). Conclusions: Low muscle mass, assessed by L3-CT, was observed to affect more than half of cancer inpatients. The deceased patients at 6 months had a lower skeletal muscle cross-sectional area and SMI. Malnutrition according to GLIM criteria using CT-determined sarcopenia was shown to adequately predict 6-month mortality.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiangliang Liu ◽  
Wei Ji ◽  
Kaiwen Zheng ◽  
Jin Lu ◽  
Lingyu Li ◽  
...  

Abstract Background Studies have shown that the skeletal muscle index at the third lumbar vertebra (L3 SMI) had reasonable specificity and sensitivity in nutritional assessment and prognostic prediction in digestive system cancers, but its performance in lung cancer needs further investigation. Methods A retrospective study was performed on 110 patients with advanced lung cancer. The L3 SMI, the Patient-Generated Subjective Global Assessment score (PG-SGA score), body mass index (BMI), and serological indicators were analyzed. According to PG-SGA scores, patients were divided into severe malnutrition (≥9 points), mild to moderate malnutrition (≥3 points and ≤ 8 points), and no malnutrition (≤2 points) groups. Pearson correlation and logistic regression analysis were adopted to find factors related to malnutrition, and a forest plot was drawn. The receiver operating characteristic (ROC) curve was performed to compare the diagnostic values of malnutrition among factors, which were expressed by the area under curve (AUC). Results 1. The age of patients in the severe malnutrition group, the mild to moderate malnutrition group, and the no malnutrition group significantly differed, with mean ages of 63.46 ± 10.01 years, 60.42 ± 8.76 years, and 55.03 ± 10.40 years, respectively (OR = 1.062, 95%CI: 1.008 ~ 1.118, P = 0.024; OR = 1.100, 95%CI: 1.034 ~ 1.170, P = 0.002). Furthermore, the neutrophil to lymphocyte ratio (NLR) of the severe malnutrition group was significantly higher than that of the no malnutrition group, with statistical significance. The difference between the mild to moderate malnutrition group and the no malnutrition group were not statistically significant, with NLR of 4.07 ± 3.34 and 2.47 ± 0.92, respectively (OR = 1.657,95%CI: 1.036 ~ 2.649, P = 0.035). The L3 SMI of patients in the severe malnutrition and mild to moderate malnutrition groups were significantly lower than that of the patients in the no malnutrition group, with statistical significance. The L3 SMI of patients in the severe malnutrition group, mild to moderate malnutrition group, and no malnutrition group were 27.40 ± 4.25 cm2/m2, 38.19 ± 6.17 cm2/m2, and 47.96 ± 5.02 cm2/m2, respectively (OR = 0.600, 95%CI: 0.462 ~ 0.777, P < 0.001; OR = 0.431, 95%CI: 0.320 ~ 0.581, P < 0.001). 2. The Pearson correlation analysis showed that the PG-SGA score positively correlated with age (r = 0.296, P < 0.05) but negatively correlated with L3 SMI (r = − 0.857, P < 0.05). The L3 SMI was also negatively correlated with age (r = − 0.240, P < 0.05). 3. The multivariate analysis showed that the L3 SMI was an independent risk factor for malnutrition (OR = 0.446, 95%CI: 0.258 ~ 0.773, P = 0.004; OR = 0.289, 95%CI: 0.159 ~ 0.524, P < 0.001). Conclusion 1. The differences in the L3 SMI was statistically significant among advanced lung cancer patients with different nutritional statuses. 2. In the nutritional assessment of patients with lung cancer, the L3 SMI was consistent with the PG-SGA. 3. The L3 SMI is an independent predictor of malnutrition in patients with advanced lung cancer.


Diagnostics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 309
Author(s):  
Kun-Yun Yeh ◽  
Hang Huong Ling ◽  
Shu-Hang Ng ◽  
Cheng-Hsu Wang ◽  
Pei-Hung Chang ◽  
...  

Background: This study investigates whether the appendicular skeletal muscle index (ASMI) was an independent prognostic predictor for patients with locally advanced head and neck cancer (LAHNC) receiving concurrent chemoradiotherapy (CCRT) and whether there were any differences in lean mass loss in different body regions during CCRT. Methods: In this prospective study, we analyzed the clinicopathological variables and the total body composition data before and after treatment. The factors associated with the 2-year recurrence-free survival rate (RFSR) were analyzed via logistic regression analysis. Results: A total of 98 patients were eligible for analysis. The body weight, body mass index, and all parameters of body composition significantly decreased after CCRT. The pretreatment ASMI was the only independent prognostic factor for predicting the 2-year RFSR (hazard ratio, 0.235; 95% confidence interval, 0.062–0.885; p = 0.030). There was at least 5% reduction in total lean and fat mass (p < 0.001); however, the highest lean mass loss was observed in the arms (9.5%), followed by the legs (7.2%), hips (7.1%), waist (4.7%), and trunk (3.6%). Conclusions: The pretreatment ASMI was the only independent prognostic predictor for the 2-year RFSR of LAHNC patients undergoing CCRT. Asynchronous loss of lean mass may be observed in different body parts after CCRT.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nicolas Lanthier ◽  
Julie Rodriguez ◽  
Maxime Nachit ◽  
Sophie Hiel ◽  
Pierre Trefois ◽  
...  

AbstractObesity could lead to metabolic dysfunction-associated fatty liver disease (MAFLD), which severity could be linked to muscle and gut microbiota disturbances. Our prospective study enrolled 52 obese patients whose MAFLD severity was estimated by transient elastography. Patients with severe steatosis (n = 36) had higher ALAT values, fasting blood glucose levels as well as higher visceral adipose tissue area and skeletal muscle index evaluated by computed tomography. Patients with fibrosis (n = 13) had higher ASAT values, increased whole muscle area and lower skeletal muscle density index. In a multivariate logistic regression analysis, myosteatosis was the strongest factor associated with fibrosis. Illumina sequencing of 16S rRNA gene amplicon was performed on fecal samples. The relative abundance of fecal Clostridium sensu stricto was significantly decreased with the presence of liver fibrosis and was negatively associated with liver stiffness measurement and myosteatosis. In addition, 19 amplicon sequence variants were regulated according to the severity of the disease. Linear discriminant analysis effect size (LEfSe) also highlighted discriminant microbes in patients with fibrosis, such as an enrichment of Enterobacteriaceae and Escherichia/Shigella compared to patients with severe steatosis without fibrosis. All those data suggest a gut-liver-muscle axis in the pathogenesis of MAFLD complications.


2021 ◽  
Vol 14 (1) ◽  
pp. 47
Author(s):  
Leni van Doorn ◽  
Marie-Rose B. S. Crombag ◽  
Hánah N. Rier ◽  
Jeroen L. A. van Vugt ◽  
Charlotte van Kesteren ◽  
...  

Changes in body composition are associated with chemotherapy-related toxicities and effectiveness of treatment. It is hypothesized that the pharmacokinetics (PK) of chemotherapeutics may depend on body composition. The effects of body composition on the variability of paclitaxel PK were studied in patients with esophageal cancer. Skeletal muscle index (SMI), visceral adipose tissue (VAT), and skeletal muscle density (SMD) were measured at the third lumbar vertebra on computed tomography (CT) scans performed before treatment. Paclitaxel PK data were collected from a prospective study performed between May 2004 and January 2014. Non-linear mixed-effects modeling was used to fit paclitaxel PK profiles and evaluate the covariates body surface area (BSA), SMI, VAT, and SMD using a significance threshold of p < 0.001. Paclitaxel was administered to 184 patients in a dose range of 50 to 175 mg/m2. Median BSA was 1.98 m2 (range of 1.4 to 2.8 m2). SMI, VAT, and SMD were not superior to BSA in predicting paclitaxel PK. The additive value of SMI, VAT, and SMD to BSA was also negligible. We did not find evidence that paclitaxel dosing could be further optimized by correcting for SMI, VAT, or SMD.


2021 ◽  
Vol 39 (3_suppl) ◽  
pp. 56-56
Author(s):  
Hiroaki Nozawa ◽  
Shigenobu Emoto ◽  
Koji Murono ◽  
Yasutaka Shuno ◽  
Soichiro Ishihara

56 Background: Systemic chemotherapy can cause loss of skeletal muscle mass in colorectal cancer (CRC) patients in the neoadjuvant and palliative settings. However, it is largely unknown how the body composition is changed by chemotherapy rendering unresectable CRC to resectable disease or how it affects the prognosis. This study aimed at elucidating the effects of systemic chemotherapy on skeletal muscles and survival in stage IV CRC patients who underwent conversion therapy. Methods: We reviewed 98 stage IV CRC patients who received systemic chemotherapy in our hospital. According to the treatment setting, patients were divided into the ‘Conversion’, ‘Neoadjuvant chemotherapy (NAC)’, and ‘Palliation’ groups. The cross-sectional area of skeletal muscles at the third lumbar level and changes in the skeletal muscle index (SMI), defined as the area divided by height squared, during chemotherapy were compared among patient groups. The effects of these parameters on prognosis were analyzed in the Conversion group. Results: The mean SMI increased by 8.0% during chemotherapy in the Conversion group (n = 38), whereas it decreased by 6.2% in the NAC group (n = 18) and 3.7% in the Palliation group (n = 42, p < 0.0001). Moreover, patients with increased SMI during chemotherapy had a better overall survival (OS) than those whose SMI decreased in the Conversion group (p = 0.021). The increase in SMI was an independent predictor of favorable OS on multivariate analysis (hazard ratio: 0.26). Conclusions: Stage IV CRC patients who underwent conversion to resection often had an increased SMI. As such an increase in SMI further conveys a survival benefit in conversion therapy, it may be important to make efforts to preserve muscle mass by meticulous approaches, such as nutritional support, muscle exercise programs, and pharmacological intervention even during chemotherapy in patients with metastatic CRC.


2021 ◽  
Vol 13 (1) ◽  
pp. 37-44
Author(s):  
ZBIGNIEW M. OSSOWSKI

Background: The loss of muscle function and reduced mobility levels are the main reasons for the limitations of independence and disability in older people. The main aim of this study was to determine the relationship between the skeletal muscle index and mobility in older women. Material and methods: ‪The study involved 166 older women. Skeletal muscle mass and other body components were determined by bioimpedance using an InBody 720 device. Functional mobility was evaluated with the timed up-and-go test. 30-second chair stand was also used to measure the level of functional strength in lower extremities. Results: ‪The skeletal muscle index was positively correlated with functional mobility (r=-0.22; p=0.00) and 30-second chair stand (r=-0.47; p=0.00). However, the strength of lower extremities was a significantly better parameter in predicting mobility in older women than the skeletal muscle index and skeletal muscle mass. Conclusions: The functional strength of lower extremity muscles and the skeletal muscle index can have a positive effect on functional mobility in older people. The results may be helpful in clinical practice when diagnosing mobility limitations and in the process of programming physical activity of older women aimed at the prevention of sarcopenia.


Sign in / Sign up

Export Citation Format

Share Document