Change in skeletal muscle index and its prognostic significance in conversion therapy for initially unresectable colorectal cancer.

2021 ◽  
Vol 39 (3_suppl) ◽  
pp. 56-56
Author(s):  
Hiroaki Nozawa ◽  
Shigenobu Emoto ◽  
Koji Murono ◽  
Yasutaka Shuno ◽  
Soichiro Ishihara

56 Background: Systemic chemotherapy can cause loss of skeletal muscle mass in colorectal cancer (CRC) patients in the neoadjuvant and palliative settings. However, it is largely unknown how the body composition is changed by chemotherapy rendering unresectable CRC to resectable disease or how it affects the prognosis. This study aimed at elucidating the effects of systemic chemotherapy on skeletal muscles and survival in stage IV CRC patients who underwent conversion therapy. Methods: We reviewed 98 stage IV CRC patients who received systemic chemotherapy in our hospital. According to the treatment setting, patients were divided into the ‘Conversion’, ‘Neoadjuvant chemotherapy (NAC)’, and ‘Palliation’ groups. The cross-sectional area of skeletal muscles at the third lumbar level and changes in the skeletal muscle index (SMI), defined as the area divided by height squared, during chemotherapy were compared among patient groups. The effects of these parameters on prognosis were analyzed in the Conversion group. Results: The mean SMI increased by 8.0% during chemotherapy in the Conversion group (n = 38), whereas it decreased by 6.2% in the NAC group (n = 18) and 3.7% in the Palliation group (n = 42, p < 0.0001). Moreover, patients with increased SMI during chemotherapy had a better overall survival (OS) than those whose SMI decreased in the Conversion group (p = 0.021). The increase in SMI was an independent predictor of favorable OS on multivariate analysis (hazard ratio: 0.26). Conclusions: Stage IV CRC patients who underwent conversion to resection often had an increased SMI. As such an increase in SMI further conveys a survival benefit in conversion therapy, it may be important to make efforts to preserve muscle mass by meticulous approaches, such as nutritional support, muscle exercise programs, and pharmacological intervention even during chemotherapy in patients with metastatic CRC.

2020 ◽  
Vol 13 ◽  
pp. 175628482097119
Author(s):  
Hiroaki Nozawa ◽  
Shigenobu Emoto ◽  
Koji Murono ◽  
Yasutaka Shuno ◽  
Kazushige Kawai ◽  
...  

Background: Systemic therapy can cause loss of skeletal muscle mass in colorectal cancer (CRC) patients in the neoadjuvant and palliative settings. However, it is unknown how the body composition is changed by chemotherapy rendering unresectable CRC to resectable disease or how it affects the prognosis. This study aimed at elucidating the effects of systemic therapy on skeletal muscles and survival in stage IV CRC patients who underwent conversion therapy. Methods: We reviewed 98 stage IV CRC patients who received systemic therapy in our hospital. According to the treatment setting, patients were divided into the conversion, neoadjuvant chemotherapy (NAC), and palliation groups. The cross-sectional area of skeletal muscles at the third lumbar level and changes in the skeletal muscle index (SMI), defined as the area divided by height squared, during systemic therapy were compared among patient groups. The effects of these parameters on prognosis were analyzed in the conversion group. Results: The mean SMI increased by 9.4% during systemic therapy in the conversion group ( n = 38), whereas it decreased by 5.9% in the NAC group ( n = 18) and 3.7% in the palliation group ( n = 42, p < 0.0001). Moreover, patients with increased SMI during systemic therapy had a better overall survival (OS) than those whose SMI decreased in the conversion group ( p = 0.025). The increase in SMI was an independent predictor of favorable OS on multivariate analysis (hazard ratio 0.25). Conclusions: Stage IV CRC patients who underwent conversion to resection often had an increased SMI. On the other hand, a decrease in the SMI during systemic therapy was a negative prognostic factor in such patients.


2019 ◽  
Vol 8 (5) ◽  
pp. 667 ◽  
Author(s):  
Eun Kyung Choe ◽  
Young Lee ◽  
Hae Yeon Kang ◽  
Seung Ho Choi ◽  
Joo Sung Kim

A relationship between lung function and sarcopenia has been suggested. This study aimed to evaluate the association between lung function and abdominal skeletal muscle mass, as measured by computed tomography (CT). The clinical records of 1907 subjects (1406 males, mean age 53.1 ± 9.2 years), who underwent routine health check-ups, including spirometry and abdominal CT, were retrospectively reviewed. The CT-measured skeletal muscle index (SMICT, cm2/(kg/m2) was defined as the skeletal muscle area of the third lumbar vertebrae (L3) level that is normalized by the body mass index. The mean values of forced vital capacity (FVC) and forced expiratory volume in one second (FEV1) gradually increased as the SMICT quartiles increased (all p for trend < 0.05). The proportions of subjects with less than 80% of the predicted FVC (%) and predicted FEV1 (%) significantly decreased as the SMICT quartiles increased (all p for trend < 0.05). The β regression coefficients for FVC and FEV1 significantly increased as the SMICT quartiles increased after adjusting for other confounding variables (p for trend < 0.05). This study showed that abdominal muscle mass, which was precisely measured by CT, independently affected lung function proportionally after adjusting for confounding factors in relatively healthy adults.


2021 ◽  
Vol 22 (10) ◽  
pp. 5081
Author(s):  
Timur M. Mirzoev ◽  
Kristina A. Sharlo ◽  
Boris S. Shenkman

Skeletal muscles, being one of the most abundant tissues in the body, are involved in many vital processes, such as locomotion, posture maintenance, respiration, glucose homeostasis, etc. Hence, the maintenance of skeletal muscle mass is crucial for overall health, prevention of various diseases, and contributes to an individual’s quality of life. Prolonged muscle inactivity/disuse (due to limb immobilization, mechanical ventilation, bedrest, spaceflight) represents one of the typical causes, leading to the loss of muscle mass and function. This disuse-induced muscle loss primarily results from repressed protein synthesis and increased proteolysis. Further, prolonged disuse results in slow-to-fast fiber-type transition, mitochondrial dysfunction and reduced oxidative capacity. Glycogen synthase kinase 3β (GSK-3β) is a key enzyme standing at the crossroads of various signaling pathways regulating a wide range of cellular processes. This review discusses various important roles of GSK-3β in the regulation of protein turnover, myosin phenotype, and oxidative capacity in skeletal muscles under disuse/unloading conditions and subsequent recovery. According to its vital functions, GSK-3β may represent a perspective therapeutic target in the treatment of muscle wasting induced by chronic disuse, aging, and a number of diseases.


Author(s):  
H. van Baar ◽  
M. J. L. Bours ◽  
S. Beijer ◽  
M. van Zutphen ◽  
F. J. B. van Duijnhoven ◽  
...  

Abstract Purpose Persistent fatigue among colorectal cancer (CRC) patients might be associated with unfavorable body composition, but data are sparse and inconsistent. We studied how skeletal muscle index (SMI), skeletal muscle radiodensity (SMR), visceral adipose tissue (VAT), and subcutaneous adipose tissue (SAT) at diagnosis are associated with fatigue up to 24 months post-diagnosis in stage I–III CRC patients. Methods SMI, SMR, VAT, and SAT were assessed among 646 CRC patients using pre-treatment computed tomography images. Fatigue at diagnosis, at 6, and 24 months post-diagnosis was assessed using the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire. The association of SMI, SMR, VAT, and SAT with fatigue (yes/no) was assessed using confounder-adjusted restricted cubic spline analyses. Results Prevalence of fatigue at diagnosis was 18%, at 6 months 25%, and at 24 months 12%. At diagnosis, a significant (p = 0.01) non-linear association of higher levels of SAT with higher prevalence of fatigue was observed. Lower levels of SMR were linearly associated with higher prevalence of fatigue at 6 months post-diagnosis (overall association p = 0.02). None of the body composition parameters were significantly associated with fatigue at 24 months. Conclusion Having more SAT was associated with more fatigue at diagnosis, while low levels of SMR were associated with more fatigue at 6 months post-diagnosis. Implications for Cancer Survivors Our results suggest that it may be interesting to investigate whether interventions that aim to increase SMR around the time of diagnosis may help to lower fatigue. However, more knowledge is needed to understand the mechanisms behind the association of SMR with fatigue.


2017 ◽  
Vol 35 (4_suppl) ◽  
pp. 259-259
Author(s):  
Go Ninomiya ◽  
Tsutomu Fujii ◽  
Suguru Yamada ◽  
Tomonari Asano ◽  
Nao Takano ◽  
...  

259 Background: In the past, various prognostic factors in pancreatic ductal carcinoma (PDAC) have been identified, and there found to be not only tumor-specific clinicopathological factors but also individual patient characteristics. In particular, weight loss, muscle wasting and cachexia are hallmarks of PDAC that may be associated with depletion of both skeletal muscle and adipose tissue. Most notably, sarcopenia is defined to be degenerative loss of skeletal muscle mass that is quantifiable using cross sectional imaging computed tomography (CT) by measurement of psoas area and the muscle’s density. Furthermore, visceral adipose tissue loss also has been reported to associate with a poor survival among patients with PDAC. Methods: A total of 265 patients who underwent curative surgery for PDAC were examined in this study. The total skeletal muscle and fat tissue areas were evaluated in a single image obtained at the third lumber vertebra during a preoperative computed tomography (CT) scan. The patients were assigned to either the sarcopenia or non-sarcopenia group based on their skeletal muscle index (SMI) and classified into high visceral fat area (H-VFA) or low VFA (L-VFA) groups. The association of clinicopathological features and prognosis with the body composition were statistically analyzed. Results: There were 170 patients (64.2%) with sarcopenia. The median survival time (MST) was 23.7 months for sarcopenia patients and 25.8 months for patients without sarcopenia. The MST was 24.4 months for H-VFA patients and 25.8 months for L-VFA patients. However, sarcopenia patients with BMI ≥ 22 exhibited significantly poorer survival than patients without sarcopenia (MST: 19.2 vs. 35.4 months, P = 0.025). There was a significant difference between patients with and without sarcopenia who did not receive chemotherapy (5-year survival rate: 0% vs. 68.3%, P = 0.003). The multivariate analysis revealed that tumor size, positive dissected peripancreatic tissue margin, and sarcopenia were independent prognostic factors. Conclusions: Sarcopenia is an independent prognostic factor in PDAC patients with a BMI ≥ 22. Therefore, evaluating skeletal muscle mass may be a simple and useful approach for predicting patient prognosis.


Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 588
Author(s):  
Hayden W. Hyatt ◽  
Scott K. Powers

Skeletal muscle is the most abundant tissue in the body and is required for numerous vital functions, including breathing and locomotion. Notably, deterioration of skeletal muscle mass is also highly correlated to mortality in patients suffering from chronic diseases (e.g., cancer). Numerous conditions can promote skeletal muscle wasting, including several chronic diseases, cancer chemotherapy, aging, and prolonged inactivity. Although the mechanisms responsible for this loss of muscle mass is multifactorial, mitochondrial dysfunction is predicted to be a major contributor to muscle wasting in various conditions. This systematic review will highlight the biochemical pathways that have been shown to link mitochondrial dysfunction to skeletal muscle wasting. Importantly, we will discuss the experimental evidence that connects mitochondrial dysfunction to muscle wasting in specific diseases (i.e., cancer and sepsis), aging, cancer chemotherapy, and prolonged muscle inactivity (e.g., limb immobilization). Finally, in hopes of stimulating future research, we conclude with a discussion of important future directions for research in the field of muscle wasting.


2021 ◽  
Vol 13 (1) ◽  
pp. 37-44
Author(s):  
ZBIGNIEW M. OSSOWSKI

Background: The loss of muscle function and reduced mobility levels are the main reasons for the limitations of independence and disability in older people. The main aim of this study was to determine the relationship between the skeletal muscle index and mobility in older women. Material and methods: ‪The study involved 166 older women. Skeletal muscle mass and other body components were determined by bioimpedance using an InBody 720 device. Functional mobility was evaluated with the timed up-and-go test. 30-second chair stand was also used to measure the level of functional strength in lower extremities. Results: ‪The skeletal muscle index was positively correlated with functional mobility (r=-0.22; p=0.00) and 30-second chair stand (r=-0.47; p=0.00). However, the strength of lower extremities was a significantly better parameter in predicting mobility in older women than the skeletal muscle index and skeletal muscle mass. Conclusions: The functional strength of lower extremity muscles and the skeletal muscle index can have a positive effect on functional mobility in older people. The results may be helpful in clinical practice when diagnosing mobility limitations and in the process of programming physical activity of older women aimed at the prevention of sarcopenia.


2020 ◽  
Vol 16 ◽  
pp. 174550652096200
Author(s):  
Tomohiro Yasuda

Objectives: The purpose of this study was to examine the prediction of skeletal muscle mass and maximum muscle strength using simplified morphology evaluation in young Japanese women from the thigh and calf perspective. Methods: A total of 249 Japanese young women (aged 18–25 years) were used for data analyses in this study. Thigh and calf girths were measured using a tape measure at 50% of thigh length and at 30% proximal of calf length, respectively. Muscle thickness was measured using B-mode ultrasound at the anterior and posterior thigh (at 50% of thigh length) and at the posterior lower leg (at 30% proximal of calf length), respectively. The measurements were carried out on the right side of the body while the participants stood with their elbows extended and relaxed. A stepwise multiple regression analysis (method of increasing and decreasing the variables; criterion set at p < 0.05) was performed for skeletal muscle index (defined by appendicular skeletal muscle mass/height2), handgrip strength, or sit-to-stand test and five variable factors (girth (thigh and calf) and muscle thickness (anterior and posterior thigh and posterior calf)). Results: Unlike the sit-to-stand test, skeletal muscle index or handgrip strength was correlated ( p < 0.001) with the girth or muscle thickness for both thigh and calf. Unlike the sit-to-stand test, the prediction equations for skeletal muscle index and handgrip strength estimation showed significant correlations with multiple regression analysis of data obtained from the calf girth and muscle thickness. In both skeletal muscle index and handgrip strength, calf girth was adopted as a Step 1, respectively. Conclusion: Our results indicated that skeletal muscle index and handgrip strength could be evaluated by the simplified morphology methods, especially that for the calf girth measurement, which may be a good indicator of screening/preventing for sarcopenia in healthy Japanese young women.


2019 ◽  
Vol 51 (6) ◽  
pp. 208-217 ◽  
Author(s):  
Bradley S. Gordon ◽  
Michael L. Rossetti ◽  
Alexey M. Eroshkin

Skeletal muscle is a highly plastic organ regulating various processes in the body. As such, loss of skeletal muscle underlies the increased morbidity and mortality risk that is associated with numerous conditions. However, no therapies are available to combat the loss of muscle mass during atrophic conditions, which is due in part to the incomplete understanding of the molecular networks altered by anabolic and catabolic stimuli. Thus, the current objective was to identify novel gene networks modulated by such stimuli. For this, total RNA from the tibialis anterior muscle of mice that were fasted overnight or fasted overnight and refed the next morning was subjected to microarray analysis. The refeeding stimulus altered the expression of genes associated with signal transduction. Specifically, expression of alpha arrestin domain containing 2 (Arrdc2) and alpha arrestin domain containing 3 (Arrdc3) was significantly lowered 70–85% by refeeding. Subsequent analysis showed that expression of these genes was also lowered 50–75% by mechanical overload, with the combination of nutrients and mechanical overload acting synergistically to lower Arrdc2 and Arrdc3 expression. On the converse, stimuli that suppress growth such as testosterone depletion or acute aerobic exercise increased Arrdc2 and Arrdc3 expression in skeletal muscle. While Arrdc2 and Arrdc3 exhibited divergent changes in expression following anabolic or catabolic stimuli, no other member of the Arrdc family of genes exhibited the consistent change in expression across the analyzed conditions. Thus, Arrdc2 and Arrdc3 are a novel set of genes that may be implicated in the regulation of skeletal muscle mass.


Sign in / Sign up

Export Citation Format

Share Document