scholarly journals Even pore-localizing missense variants at highly conserved sites in KCNQ1 -encoded K v 7.1 channels may have wild-type function and not cause type 1 long QT syndrome: Do not rely solely on the genetic test company's interpretation

2018 ◽  
Vol 4 (2) ◽  
pp. 37-44 ◽  
Author(s):  
Ashley Paquin ◽  
Dan Ye ◽  
David J. Tester ◽  
Jamie D. Kapplinger ◽  
Michael T. Zimmermann ◽  
...  
Author(s):  
Steven M. Dotzler ◽  
C.S. John Kim ◽  
William A.C. Gendron ◽  
Wei Zhou ◽  
Dan Ye ◽  
...  

Background: Type 1 long QT syndrome (LQT1) is caused by loss-of-function variants in the KCNQ1 -encoded K v 7.1 potassium channel α-subunit which is essential for cardiac repolarization, providing the slow delayed rectifier current (IKs). No current therapies target the molecular cause of LQT1. Methods: A dual-component "suppression-and-replacement" (SupRep) KCNQ1 gene therapy was created by cloning a KCNQ1 shRNA and a "shRNA-immune" (shIMM) KCNQ1 cDNA modified with silent variants in the shRNA target site, into a single construct. The ability of KCNQ1-SupRep gene therapy to suppress and replace LQT1-causative variants in KCNQ1 was evaluated via heterologous expression in TSA201 cells. For a human in vitro cardiac model, induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) were generated from four patients with LQT1 (KCNQ1-Y171X, -V254M, -I567S, and -A344A/spl) and an unrelated healthy control. CRISPR-Cas9 corrected isogenic control iPSC-CMs were made for two LQT1 lines (correction of KCNQ1-V254M and KCNQ1-A344A/spl). FluoVolt voltage dye was used to measure the cardiac action potential duration (APD) in iPSC-CMs treated with KCNQ1-SupRep. Results: In TSA201 cells, KCNQ1-SupRep achieved mutation-independent suppression of wild-type KCNQ1 and three LQT1-causative variants (KCNQ1-Y171X, -V254M, and -I567S) with simultaneous replacement of KCNQ1-shIMM as measured by allele-specific qRT-PCR and western blot. Using FluoVolt voltage dye to measure the cardiac APD in the four LQT1 patient-derived iPSC-CMs, treatment with KCNQ1-SupRep resulted in shortening of the pathologically prolonged APD at both 90% (APD 90 ) and 50% (APD 50 ) repolarization resulting in APD values similar to those of the two isogenic controls. Conclusions: This study provides the first proof-of-principle gene therapy for complete correction of LQTS. As a dual-component gene therapy vector, KCNQ1-SupRep successfully suppressed and replaced KCNQ1 to normal wild-type levels. In TSA201 cells, co-transfection of LQT1-causative variants and KCNQ1-SupRep caused mutation-independent suppression-and-replacement of KCNQ1 . In LQT1 iPSC-CMs, KCNQ1-SupRep gene therapy shortened the APD, thereby eliminating the pathognomonic feature of LQT1.


2012 ◽  
Vol 443 (3) ◽  
pp. 635-642 ◽  
Author(s):  
Stephen C. Harmer ◽  
Jagdeep S. Mohal ◽  
Duncan Kemp ◽  
Andrew Tinker

The nonsense mutations R518X-KCNQ1 and Q530X-KCNQ1 cause LQT1 (long-QT syndrome type 1) and result in a complete loss of IKs channel function. In the present study we attempted to rescue the function of these mutants, in HEK (human embryonic kidney)-293 cells, by promoting readthrough of their PTCs (premature termination codons) using the pharmacological agents G-418, gentamicin and PTC124. Gentamicin and G-418 acted to promote full-length channel protein expression from R518X at 100 μM and from Q530X at 1 mM. In contrast, PTC124 did not, at any dose tested, induce readthrough of either mutant. G-418 (1 mM) treatment also acted to significantly (P<0.05) increase current density and peak-tail current density, at +80 mV for R518X, but not Q530X, to 58±11% and 82±17% of the wild-type level respectively. However, the biophysical properties of the currents produced from R518X, while similar, were not identical with wild-type as the voltage-dependence of activation was significantly (P<0.05) shifted by +25 mV. Overall, these findings indicate that although functional rescue of LQT1 nonsense mutations is possible, it is dependent on the degree of readthrough achieved and the effect on channel function of the amino acid substituted for the PTC. Such considerations will determine the success of future therapies.


2004 ◽  
Author(s):  
K. S. W. H. Hendriks ◽  
F. J. M. Grosfeld ◽  
A. A. M. Wilde ◽  
J. van den Bout ◽  
I. M. van Langen ◽  
...  

2011 ◽  
Vol 12 (1) ◽  
Author(s):  
Annukka M Lahtinen ◽  
Annukka Marjamaa ◽  
Heikki Swan ◽  
Kimmo Kontula
Keyword(s):  
Long Qt ◽  

Sign in / Sign up

Export Citation Format

Share Document