scholarly journals Gene expression patterns associated with tumor-infiltrating CD4+ and CD8+ T cells in invasive breast carcinomas

Author(s):  
Zhanwei Wang ◽  
Xi Yang ◽  
Junjun Shen ◽  
Jiamin Xu ◽  
Mingyue Pan ◽  
...  
2020 ◽  
Author(s):  
zhanwei Wang ◽  
Jiamin Xu ◽  
Xi Yang ◽  
Yuefen Pan ◽  
Junjun Shen ◽  
...  

Abstract Objective: This study investigated the gene expression patterns associated with tumor-infiltrating CD4+ and CD8+ T cells in invasive breast carcinomas.Methods: The gene expression data and corresponding clinical phenotype data from the Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) were downloaded. The stromal and immune score were calculated using ESTIMATE. The differentially expressed genes (DEGs) with a high vs. low stromal score and a high vs. low immune score were screened and then functionally enriched. The tumor-infiltrating immune cells were investigated using the Cibersort algorithm, and the CD4+ and CD8+ T cell-related genes were identified using a Spearman correlation test of infiltrating abundance with the DEGs. Moreover, the miRNA-mRNA pairs and lncRNA-miRNA pairs were predicted to construct the competing endogenous RNAs (ceRNA) network. Kaplan-Meier (K-M) survival curves were also plotted.Results: In total, 478 DEGs with a high vs. low stromal score and 796 DEGs with a high vs. low immune score were identified. In addition, 39 CD4+ T cell-related genes and 78 CD8+ T cell-related genes were identified; of these, 14 genes were significantly associated with the prognosis of BRCA patients. Moreover, for CD4+ T cell-related genes, the chr22-38_28785274-29006793.1-–miR-34a/c-5p–CAPN6 axis was identified from the ceRNA network, whereas the chr22-38_28785274-29006793.1–miR-494-3p–SLC9A7 axis was identified for CD8+ T cell-related genes.Conclusions: The chr22-38_28785274-29006793.1-–miR-34a/c-5p–CAPN6 axis and the chr22-38_28785274-29006793.1–miR-494-3p–SLC9A7 axis might regulate cellular activities associated with CD4+ and CD8+ T cell infiltration, respectively, in BRCA.


2020 ◽  
Author(s):  
Zhanwei Wang ◽  
Jiamin Xu ◽  
Xi Yang ◽  
Yuefen Pan ◽  
Junjun Shen ◽  
...  

Abstract Objective This study investigated the gene expression patterns associated with tumor-infiltrating CD4 + and CD8 + T cells in invasive breast carcinomas.Methods The gene expression data and corresponding clinical phenotype data from the Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) were downloaded. The stromal and immune score were calculated using ESTIMATE. The differentially expressed genes (DEGs) with a high vs. low stromal score and a high vs. low immune score were screened and then functionally enriched. The tumor-infiltrating immune cells were investigated using the Cibersort algorithm, and the CD4 + and CD8 + T cell-related genes were identified using a Spearman correlation test of infiltrating abundance with the DEGs. Moreover, the miRNA-mRNA pairs and lncRNA-miRNA pairs were predicted to construct the competing endogenous RNAs (ceRNA) network. Kaplan-Meier (K-M) survival curves were also plotted.Results In total, 478 DEGs with a high vs. low stromal score and 796 DEGs with a high vs. low immune score were identified. In addition, 39 CD4 + T cell-related genes and 78 CD8 + T cell-related genes were identified; of these, 14 genes were significantly associated with the prognosis of BRCA patients. Moreover, for CD4 + T cell-related genes, the chr22-38_28785274-29006793.1–miR-34a/c-5p–CAPN6 axis was identified from the ceRNA network, whereas the chr22-38_28785274-29006793.1–miR-494-3p–SLC9A7 axis was identified for CD8 + T cell-related genes.Conclusions The chr22-38_28785274-29006793.1–miR-34a/c-5p–CAPN6 axis and the chr22-38_28785274-29006793.1–miR-494-3p–SLC9A7 axis might regulate cellular activities associated with CD4 + and CD8 + T cell infiltration, respectively, in BRCA.


Aging Cell ◽  
2010 ◽  
Vol 9 (1) ◽  
pp. 19-31 ◽  
Author(s):  
Jia-Ning Cao ◽  
Sastry Gollapudi ◽  
Edward H. Sharman ◽  
Zhenyu Jia ◽  
Sudhir Gupta

2020 ◽  
Author(s):  
Zhanwei Wang ◽  
Xi Yang ◽  
Jiamin Xu ◽  
Yuefen Pan ◽  
Junjun Shen ◽  
...  

Abstract Objective: This study investigated the gene expression patterns associated with tumor-infiltrating CD4+ and CD8+ T cells in invasive breast carcinomas.Methods: The gene expression data and corresponding clinical phenotype data from the Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) were downloaded. The stromal and immune score were calculated using ESTIMATE. The differentially expressed genes (DEGs) with a high vs. low stromal score and a high vs. low immune score were screened and then functionally enriched. The tumor-infiltrating immune cells were investigated using the Cibersort algorithm, and the CD4+ and CD8+ T cell-related genes were identified using a Spearman correlation test of infiltrating abundance with the DEGs. Moreover, the miRNA-mRNA pairs and lncRNA-miRNA pairs were predicted to construct the competing endogenous RNAs (ceRNA) network. Kaplan-Meier (K-M) survival curves were also plotted.Results: In total, 478 DEGs with a high vs. low stromal score and 796 DEGs with a high vs. low immune score were identified. In addition, 39 CD4+ T cell-related genes and 78 CD8+ T cell-related genes were identified; of these, 14 genes were significantly associated with the prognosis of BRCA patients. Moreover, for CD4+ T cell-related genes, the chr22-38_28785274-29006793.1-–miR-34a/c-5p–CAPN6 axis was identified from the ceRNA network, whereas the chr22-38_28785274-29006793.1–miR-494-3p–SLC9A7 axis was identified for CD8+ T cell-related genes.Conclusions: The chr22-38_28785274-29006793.1-–miR-34a/c-5p–CAPN6 axis and the chr22-38_28785274-29006793.1–miR-494-3p–SLC9A7 axis might regulate cellular activities associated with CD4+ and CD8+ T cell infiltration, respectively, in BRCA.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2210-2210
Author(s):  
H. Jiang ◽  
C. Wade-Harris ◽  
L. Baxi ◽  
M. S. Cairo

Abstract It has been recognized that dysfunction of CB immunity is in part due to the immaturity of the neonatal immune system (Cairo, Blood, 1997). However, biological pathways and molecular mechanisms associated with the immaturity of CB immunity are still poorly understood. Recently we have utilized oligonucleotide microarray to examine gene expression profiling of CB versus APB Mo and have demonstrated significant differential gene expression patterns, including surface molecules, cytokines, signaling molecules, transcription factors and apoptotic genes (Jiang/Cairo, et al, J. of Immunol., 2004). We sought to examine whether there are differential expressed genes occurred in Mo-derived CB versus APB DC and their impact on DC mediated T cell activity. Briefly, Mo were purified from fresh CB or APB and cultured for 8 days with GM-CSF and IL-4 (immature DC (iDC)) and LPS for mature DC (mDC). mRNA was isolated and oligonucleotide microarray was carried out (Affymetrix, U133A). Data was analyzed by Microarray Suite Version 5.0 (Affymetrix) and GeneSpring 5.0 software (Silicon Genetics). Selected genes were analyzed by RT-PCR (SuperScript, Invetrogen). We identified gene expression patterns that were significantly lower in CB versus APB DC including surface molecules HLA-DQA1 (4F), HLA-DRB3 (5F), HLA-DRB4 (5.5F), CD80 (3F), CD38 (3.8F); cytokine/chemokine genes IL-1b (2.5F), IL6 (2.9F), IL12B (3.5F), CXCL10 (6.6F); immunoregulatory genes ISG20 (11F), IFI27 (7.6F), TNFSF10 (4.5F), SOCS3 (2.5F). Moreover, several transcription factor genes whose proteins may involve in the activation of expression of these immune regulator genes were also differentially expressed (IRF-5 (3F), IRF7 (3F), MAD (6.3F)). We therefore compared CB versus APB DC antigen presentation activity to APB CD8 T cells by ELISPOT assay for interferon-r (IFNr) production (BD Pharmagen). Briefly, the purified CD8 T cells (MHC HLA A2) were incubated with CB or APB DC that were loaded without or with influenza peptide onto ELISPOT plate (Larsson, et al, J. of Immunol., 2000). The ELISPOT plates were developed, scanned and quantitated by an ELISPOT reader (C.T.L. Technology). Our results demonstrated that, although CB or APB mDC had allogeneic effects, influenza peptide loaded CB mDC was not able to induce CD8 T cells to produce IFNr while APB mDC loaded with influenza peptide strongly induced CD8 T cells to produce IFNr. This stimulatory effect of APB mDC on CD8 T cells to produce IFNr was 3.5 fold greater than that of CB mDC. We further examined DC antigen presentation activity to CD4 T cells and observed that APB-DC had stronger effects on CD4 T cell proliferation (3 fold for mDC vs. iDC) compared with CB-DC (only 1.5 fold for mDC vs. iDC) by CFSE assay (Molecular Probe). We postulate that decreased expression of specific surface molecules and other genes resulting in lower surface protein expression in CB DC may in part be responsible for the lack of initiation of signaling events from cell surface to trigger CB-DC to stimulate activation of CD8 and CD4 T cells. The decreased expression of transcription factor genes may also in part be responsible for the lower expressed surface molecule genes. Furthermore, these decreased expressed genes in other molecular categories in LPS-CB vs. APB DC may also partially be responsible for differential innate and adaptive immune function and properties of CB vs. APB.


Aging Cell ◽  
2010 ◽  
Vol 9 (3) ◽  
pp. 453-453 ◽  
Author(s):  
Jia-Ning Cao ◽  
Sastry Gollapudi ◽  
Edward H. Sharman ◽  
Zhenyu Jia ◽  
Sudhir Gupta

2005 ◽  
Vol 12 (3) ◽  
pp. 203-209 ◽  
Author(s):  
Mathilda Mandel ◽  
Michael Gurevich ◽  
Gad Lavie ◽  
Irun R. Cohen ◽  
Anat Achiron

Multiple sclerosis (MS) is an autoimmune disease where T-cells activated against myelin antigens are involved in myelin destruction. Yet, healthy subjects also harbor T-cells responsive to myelin antigens, suggesting that MS patient-derived autoimmune T-cells might bear functional differences from T-cells derived from healthy individuals. We addressed this issue by analyzing gene expression patterns of myelin oligodendrocytic glycoprotein (MOG) responsive T-cell lines generated from MS patients and healthy subjects. We identified 150 transcripts that were differentially expressed between MS patients and healthy controls. The most informative 43 genes exhibited >1.5-fold change in expression level. Eighteen genes were up-regulated including BCL2, lifeguard, IGFBP3 and VEGF. Twenty five genes were down-regulated, including apoptotic activators like TNF and heat shock protein genes. This gene expression pattern was unique to MOG specific T-cell lines and was not expressed in T-cell lines reactive to tetanus toxin (TTX). Our results indicate that activation in MS that promotes T-cell survival and expansion, has its own state and that the unique gene expression pattern that characterize autoreactive T-cells in MS represent a constellation of factors in which the chronicity, timing and accumulation of damage make the difference between health and disease.


2021 ◽  
Vol 11 (12) ◽  
pp. 1291
Author(s):  
Deni Ramljak ◽  
Martina Vukoja ◽  
Marina Curlin ◽  
Katarina Vukojevic ◽  
Maja Barbaric ◽  
...  

Healthy and controlled immune response in COVID-19 is crucial for mild forms of the disease. Although CD8+ T cells play important role in this response, there is still a lack of studies showing the gene expression profiles in those cells at the beginning of the disease as potential predictors of more severe forms after the first week. We investigated a proportion of different subpopulations of CD8+ T cells and their gene expression patterns for cytotoxic proteins (perforin-1 (PRF1), granulysin (GNLY), granzyme B (GZMB), granzyme A (GZMA), granzyme K (GZMK)), cytokine interferon-γ (IFN-γ), and apoptotic protein Fas ligand (FASL) in CD8+ T cells from peripheral blood in first weeks of SARS-CoV-2 infection. Sixteen COVID-19 patients and nine healthy controls were included. The absolute counts of total lymphocytes (p = 0.007), CD3+ (p = 0.05), and CD8+ T cells (p = 0.01) in COVID-19 patients were significantly decreased compared to healthy controls. In COVID-19 patients in CD8+ T cell compartment, we observed lower frequency effector memory 1 (EM1) (p = 0.06) and effector memory 4 (EM4) (p < 0.001) CD8+ T cells. Higher mRNA expression of PRF1 (p = 0.05) and lower mRNA expression of FASL (p = 0.05) at the fifth day of the disease were found in COVID-19 patients compared to healthy controls. mRNA expression of PRF1 (p < 0.001) and IFN-γ (p < 0.001) was significantly downregulated in the first week of disease in COVID-19 patients who progressed to moderate and severe forms after the first week, compared to patients with mild symptoms during the entire disease course. GZMK (p < 0.01) and FASL (p < 0.01) mRNA expression was downregulated in all COVID-19 patients compared to healthy controls. Our results can lead to a better understanding of the inappropriate immune response of CD8+ T cells in SARS-CoV2 with the faster progression of the disease.


2010 ◽  
Vol 206 (4) ◽  
pp. 223-228 ◽  
Author(s):  
Ivyna Bong Pau Ni ◽  
Zubaidah Zakaria ◽  
Rohaizak Muhammad ◽  
Norlia Abdullah ◽  
Naqiyah Ibrahim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document