Experimental investigations on thermal performance enhancement and effect of orientation on porous matrix filled PCM based heat sink

Author(s):  
Rajesh Baby ◽  
C. Balaji
2020 ◽  
Vol 28 (01) ◽  
pp. 2050008
Author(s):  
Vignesh Lakshmanan ◽  
Pushpak Doiphode ◽  
Indraneel Samanta

Inverter air conditioners are being widely used in the air conditioning sector for energy saving purposes. These air conditioners use an inverter or a variable frequency drive (VFD) to control the compressor operating speed based on cooling or heating load fluctuations. If the heat generated by the electronic components of the VFD is not dissipated properly, it can lead to failure of the VFD. In general, a heat sink is used for dissipating the heat generated by the electronic components of the VFD. The heat sink can be either air cooled or liquid cooled. Using computational fluid dynamics (CFD), this paper deals with optimization of the thermal performance of an air cooled plate-fin heat sink with rectangular fins used in a residential split inverter air conditioner. Commercially available CFD tool has been used for simulations. It has been observed that enhancing fluid flow around the heat sink and improving heat transfer area of the fins significantly improve the thermal performance of the heat sink. By using heat sink with rectangular fins having a stepped profile, it has been possible to improve the heat transfer from the baseline case by 27%. Whereas, by using hollow fins, heat transfer improvement of 20% has been achieved.


2016 ◽  
Vol 12 (12) ◽  
pp. 4582-4587
Author(s):  
Arulmurugan Loganathan ◽  
Ilangkumaran Mani

An Experimental investigation on the thermal performance of copper with aluminium based finned heat sinks for electronics cooling system was studied. The heat sinks have different material proportions containing major constituent of aluminium and minor constituent of copper. Considered with straight finned heat sink for the experiments for its easiness in fabrication and efficient heat transfer properties. The observational results for aluminium with copper alloy are compared with pure aluminium heat sink.  Heat sink geometry, fin pitch and its height were taken from the commercially available heat sinks. In this research work best heat sink geometry is chosen and cooked up with different volume of copper added with aluminium. Selected four different spots of heat sinks and the temperature raising characteristics were measured for natural convection. also the temperature is raised to a fixed temperature and the temperature lowering characteristics were measured in forced convection as the air circulation takes more heat to keep the heat sink temperature within the desired level.


Author(s):  
Pablo Hidalgo ◽  
Ari Glezer

Heat transfer in a high aspect ratio, rectangular mm-scale channel that models a segment of a high-performance, air-cooled heat-sink is enhanced by deliberate formation of unsteady small-scale vortical motions. These small-scale motions are induced by self-fluttering, cantilevered planar thin-film reeds that are placed along the channel’s centerline. Heat transfer is enhanced by significant increases in both the local heat transfer coefficient at the fins surfaces, and in the mixing between the thermal boundary layers and the cooler core flow. The present investigation characterizes the thermal performance enhancement by reed actuation compared to the base flow (in the absence of the reeds) in terms of increased power dissipation over a range of flow rates, along with the associated fluid power. It is shown that because the cooling flow rate that is needed to sustain a given heat flux at a given surface temperature is almost two times higher than in the presence of the reeds, the reeds lead to a four-fold increase in thermal performance (as measured by the ratio of power dissipated to fluid power). The thermal effectiveness of the reeds is tested in a multi-channel heat sink, and it is shown that the improvement in heat transfer coefficient of the base flow is similar to that of the single channel.


Author(s):  
Sandeep S. Kore ◽  
Rupesh Yadav ◽  
Satish Chinchanikar ◽  
Pralhad Tipole ◽  
Vishal Dhole

Author(s):  
Rohit Kothari ◽  
Pawan Mahalkar ◽  
Santosh K. Sahu ◽  
Shailesh I. Kundalwal

In the present experimental study, an attempt has been made to study the efficient thermal management system based on phase change material for cooling of portable electronic devices. Paraffin wax is used as PCM to keep the temperature of electronic devices below critical temperature by absorbing thermal energy released by electronic components. PCM is filled inside the heat sink made of aluminum. Four different configuration of heat sink such as unfinned heat sink filled with pure PCM, two finned heat sink filled with pure PCM, unfinned heat sink filled with MF-PCM composite and two finned heat sink filled with MF-PCM composite are used in the present investigation to enhance the operating time of heat sink to reach critical set point temperature. Unfinned heat sink filled with and without PCM is used for baseline comparison. Effect of volume fraction of PCM, effect of heat flux and enhancement in operating time are reported in this study. Enhancement ratios are obtained for various heat sink configurations. The comparison of thermal performance of different configuration shows that higher enhancement ratio and effective thermal control is obtained with two finned metal foam heat sink.


2019 ◽  
Vol 50 (8) ◽  
pp. 757-772 ◽  
Author(s):  
Yicang Huang ◽  
Hui Li ◽  
Shengnan Shen ◽  
Yongbo Xue ◽  
Mingliang Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document