Small-Scale Vorticity Induced by a Self-Oscillating Fluttering Reed for Heat Transfer Augmentation in Air Cooled Heat Sinks

Author(s):  
Pablo Hidalgo ◽  
Ari Glezer

Heat transfer in a high aspect ratio, rectangular mm-scale channel that models a segment of a high-performance, air-cooled heat-sink is enhanced by deliberate formation of unsteady small-scale vortical motions. These small-scale motions are induced by self-fluttering, cantilevered planar thin-film reeds that are placed along the channel’s centerline. Heat transfer is enhanced by significant increases in both the local heat transfer coefficient at the fins surfaces, and in the mixing between the thermal boundary layers and the cooler core flow. The present investigation characterizes the thermal performance enhancement by reed actuation compared to the base flow (in the absence of the reeds) in terms of increased power dissipation over a range of flow rates, along with the associated fluid power. It is shown that because the cooling flow rate that is needed to sustain a given heat flux at a given surface temperature is almost two times higher than in the presence of the reeds, the reeds lead to a four-fold increase in thermal performance (as measured by the ratio of power dissipated to fluid power). The thermal effectiveness of the reeds is tested in a multi-channel heat sink, and it is shown that the improvement in heat transfer coefficient of the base flow is similar to that of the single channel.

Author(s):  
Hossein Mohammad Ghasemi ◽  
Neda Gilani ◽  
Jafar Towfighi Daryan

A new arrangement of side-wall burners of an industrial furnace was studied by three-dimensional computational fluid dynamics (CFD) simulation. This simulation was conducted on ten calculation domain. Finite rate/eddy dissipation model was used as a combustion model. Discrete ordinate model (DOM) was considered as radiation model. Furthermore, weighted sum of gray gas model (WSGGM) was used to calculate radiative gas properties. Tube skin temperature and heat flux profiles were obtained by solving mass, momentum, and energy equations. Moreover, fuel rate variation was considered as an effective parameter. A base flow rate of fuel (m˙=0.0695kg/s) was assigned and different ratios (0.25 m˙, 0.5 m˙, 2 m˙, and 4 m˙) were assigned to investigate the heat distribution over the furnace. Resulted temperature and heat profiles were obtained in nonuniform mode using the proposed wall burner arrangement. According to the results, despite increased heat transfer coefficient of about 34% for m˙–4 m˙, temperature profile for this rate is too high and is harmful for tube metallurgy. Also, the proper range for fuel rate variation was determined as 0.5–2 m˙. In this range, heat transfer coefficient and Nusselt number for m˙–2 m˙ were increased by 21% and for m˙–0.25 m˙ were decreased by about 28%.


2014 ◽  
Vol 1070-1072 ◽  
pp. 1705-1708
Author(s):  
Xiao Lu Wang ◽  
Da Yu Huang

In this paper, condensation mechanism of the Freon refrigerants outside spiral grooved tube is discussed. The heat transfer coefficient of Freon refrigerants condensation outside spiral grooved tube is obtained. A calculation example of heat transfer coefficient on the tube bundle of condenser with baffle bars is presented. It shows the excellent thermal performance of the spiral groove tubes compared to smooth tubes.


Author(s):  
Ayman Megahed ◽  
Ibrahim Hassan ◽  
Tariq Ahmad

The present study focuses on the experimental investigation of boiling heat transfer characteristics and pressure drop in a silicon microchannel heat sink. The microchannel heat sink consists of a rectangular silicon chip in which 45 rectangular microchannels were chemically etched with a depth of 295 μm, width of 254 μm, and a length of 16 mm. Un-encapsulated Thermochromic liquid Crystals (TLC) are used in the present work to enable nonintrusive and high spatial resolution temperature measurements. This measuring technique is used to provide accurate full and local surface-temperature and heat transfer coefficient measurements. Experiments are carried out for mass velocities ranging between 290 to 457 kg/m2.s and heat fluxes from 6.04 to 13.06 W/cm2 using FC-72 as the working fluid. Experimental results show that the pressure drop increases as the exit quality and the flow rate increase. High values of heat transfer coefficient can be obtained at low exit quality (xe < 0.2). However, the heat transfer coefficient decreases sharply and remains almost constant as the quality increases for an exit quality higher than 0.2.


1997 ◽  
Vol 119 (2) ◽  
pp. 381-389 ◽  
Author(s):  
M. E. Taslim ◽  
C. M. Wadsworth

Turbine blade cooling, a common practice in modern aircraft engines, is accomplished, among other methods, by passing the cooling air through an often serpentine passage in the core of the blade. Furthermore, to enhance the heat transfer coefficient, these passages are roughened with rib-shaped turbulence promoters (turbulators). Considerable data are available on the heat transfer coefficient on the passage surface between the ribs. However, the heat transfer coefficients on the surface of the ribs themselves have not been investigated to the same extent. In small aircraft engines with small cooling passages and relatively large ribs, the rib surfaces comprise a large portion of the passage heat transfer area. Therefore, an accurate account of the heat transfer coefficient on the rib surfaces is critical in the overall design of the blade cooling system. The objective of this experimental investigation was to conduct a series of 13 tests to measure the rib surface-averaged heat transfer coefficient, hrib, in a square duct roughened with staggered 90 deg ribs. To investigate the effects that blockage ratio, e/Dh and pitch-to-height ratio, S/e, have on hrib and passage friction factor, three rib geometries corresponding to blockage ratios of 0.133, 0.167, and 0.25 were tested for pitch-to-height ratios of 5, 7, 8.5, and 10. Comparisons were made between the rib average heat transfer coefficient and that on the wall surface between two ribs, hfloor, reported previously. Heat transfer coefficients of the upstream-most rib and that of a typical rib located in the middle of the rib-roughened region of the passage wall were also compared. It is concluded that: 1 The rib average heat transfer coefficient is much higher than that for the area between the ribs; 2 similar to the heat transfer coefficient on the surface between the ribs, the average rib heat transfer coefficient increases with the blockage ratio; 3 a pitch-to-height ratios of 8.5 consistently produced the highest rib average heat transfer coefficients amongst all tested; 4 under otherwise identical conditions, ribs in upstream-most position produced lower heat transfer coefficients than the midchannel positions, 5 the upstream-most rib average heat transfer coefficients decreased with the blockage ratio; and 6 thermal performance decreased with increased blockage ratio. While a pitch-to-height ratio of 8.5 and 10 had the highest thermal performance for the smallest rib geometry, thermal performance of high blockage ribs did not change significantly with the pitch-to-height ratio.


Author(s):  
Suchismita Sarangi ◽  
Karthik K. Bodla ◽  
Suresh V. Garimella ◽  
Jayathi Y. Murthy

Conventional microchannel heat sinks provide good heat dissipation capability but are associated with high pressure drop and corresponding pumping power. The use of a manifold system that distributes the flow into the microchannels through multiple, alternating inlet and outlet pairs is investigated here. This manifold arrangement greatly reduces the pressure drop incurred due to the smaller flow paths, while simultaneously increasing the heat transfer coefficient by tripping the thermal boundary layers. A three-dimensional numerical model is developed and validated, to study the effect of various geometric parameters on the performance of the manifold microchannel heat sink. Apart from a deterministic analysis, a probabilistic optimization study is also performed. In the presence of uncertainties in the geometric and operating parameters of the system, this probabilistic optimization approach yields an optimal design that is also robust and reliable. Uncertainty-based optimization also yields auxiliary information regarding local and global sensitivities and helps identify the input parameters to which outputs are most sensitive. This information can be used to design improved experiments targeted at the most sensitive inputs. Optimization under uncertainty also provides a quantitative estimate of the allowable uncertainty in input parameters for an acceptable uncertainty in the relevant output parameters. The optimal geometric design parameters with uncertainties that maximize heat transfer coefficient while minimizing pressure drop for fixed input conditions are identified for a manifold microchannel heat sink. A comparison between the deterministic and probabilistic optimization results is also presented.


2020 ◽  
Vol 28 (01) ◽  
pp. 2050008
Author(s):  
Vignesh Lakshmanan ◽  
Pushpak Doiphode ◽  
Indraneel Samanta

Inverter air conditioners are being widely used in the air conditioning sector for energy saving purposes. These air conditioners use an inverter or a variable frequency drive (VFD) to control the compressor operating speed based on cooling or heating load fluctuations. If the heat generated by the electronic components of the VFD is not dissipated properly, it can lead to failure of the VFD. In general, a heat sink is used for dissipating the heat generated by the electronic components of the VFD. The heat sink can be either air cooled or liquid cooled. Using computational fluid dynamics (CFD), this paper deals with optimization of the thermal performance of an air cooled plate-fin heat sink with rectangular fins used in a residential split inverter air conditioner. Commercially available CFD tool has been used for simulations. It has been observed that enhancing fluid flow around the heat sink and improving heat transfer area of the fins significantly improve the thermal performance of the heat sink. By using heat sink with rectangular fins having a stepped profile, it has been possible to improve the heat transfer from the baseline case by 27%. Whereas, by using hollow fins, heat transfer improvement of 20% has been achieved.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2978 ◽  
Author(s):  
Elisabete R. Teixeira ◽  
Gilberto Machado ◽  
Adilson de P. Junior ◽  
Christiane Guarnier ◽  
Jorge Fernandes ◽  
...  

The present research is focused on an experimental investigation to evaluate the mechanical, durability, and thermal performance of compressed earth blocks (CEBs) produced in Portugal. CEBs were analysed in terms of electrical resistivity, ultrasonic pulse velocity, compressive strength, total water absorption, water absorption by capillarity, accelerated erosion test, and thermal transmittance evaluated in a guarded hotbox setup apparatus. Overall, the results showed that compressed earth blocks presented good mechanical and durability properties. Still, they had some issues in terms of porosity due to the particle size distribution of soil used for their production. The compressive strength value obtained was 9 MPa, which is considerably higher than the minimum requirements for compressed earth blocks. Moreover, they presented a heat transfer coefficient of 2.66 W/(m2·K). This heat transfer coefficient means that this type of masonry unit cannot be used in the building envelope without an additional thermal insulation layer but shows that they are suitable to be used in partition walls. Although CEBs have promising characteristics when compared to conventional bricks, results also showed that their proprieties could even be improved if optimisation of the soil mixture is implemented.


Sign in / Sign up

Export Citation Format

Share Document