Heat transfer augmentation through the use of wire-rod bundles under constant wall heat flux condition

Author(s):  
K. Nanan ◽  
M. Pimsarn ◽  
W. Jedsadaratanachai ◽  
S. Eiamsa-ard
2019 ◽  
Vol 141 (6) ◽  
Author(s):  
Ted D. Bennett

The historical approach to averaging the convection coefficient in tubes of constant wall heat flux leads to quantitative errors in short tubes as high as 12.5% for convection into fully developed flows and 33.3% for convection into hydrodynamically developing flows. This mistake can be found in teaching texts and monographs on heat transfer, as well as in major handbooks. Using the correctly defined relationship between local and average convection coefficients, eight new correlations are presented for fully developed and developing flows in round tubes and between parallel plates for the constant wall heat flux condition. These new correlations are within 2% of exact solutions for fully developed flows and within 6% of first principle calculations for hydrodynamically developing flows.


1963 ◽  
Vol 85 (4) ◽  
pp. 371-377 ◽  
Author(s):  
J. T. Yen

Effect of wall electrical conductance on laminar fully developed magnetohydrodynamic heat transfer in a channel with constant wall heat flux and exact magnetohydrodynamic boundary conditions are investigated. For channels with insulated walls, viscous dissipation is more important than joule heating for all Ec and M. For sufficiently large wall conductance, viscous dissipation is dominated by joule heating for all Ec, if M is large enough; both are in turn dominated by wall heat flux if Ec is large enough for all M. These and other conclusions are discussed in this paper.


Author(s):  
J. C. Han ◽  
Y. M. Zhang ◽  
C. P. Lee

The effect of wall heat flux ratio on the local heat transfer augmentation in a square channel with two opposite in-line ribbed walls was investigated for Reynolds numbers from 15,000 to 80,000. The square channel composed of ten isolated copper sections has a length-to-hydraulic diameter ratio (L/D) of 20. The rib height-to-hydraulic diameter ratio (e/D) is 0.0625 and the rib pitch-to-height ratio (P/e) equals 10. Six ribbed side to smooth side wall heat flux ratios (Case 1 - q″r1/q″s = q″r2/q″s = 1; Case 2 - q″r1/q″s = q″r2/q″s = 3; Case 3 - q″r1/q″s = q″r2/q″s = 6; Case 4 - q″r1/q″s = 6 and q″r2/q″s = 4; Case 5 - q″r1/q″s = q″r2/q″s = ∞ and Case 6 - q″r1/q″s = ∞ and q″r2/q″s = 0) were studied for four rib orientations (90° rib, 60° parallel rib, 60° crossed rib, and 60° ∨-shaped rib). The results show that the ribbed side wall heat transfer augmentation increases with increasing ribbed side to smooth side wall heat flux ratios, but the reverse is true for the smooth side wall heat transfer augmentation. The average heat transfer augmentation of the ribbed side and smooth side wall decreases slightly with increasing wall heat flux ratios. Two ribbed side wall heating (Case 5 - q″r1/q″s = q″r2/q″s = ∞) provides a higher ribbed-side-wall heat transfer augmentation than the four-wall uniform heating (Case 1 - q″r1/q″s = q″r2/q″s = 1). The effect of wall heat flux ratio reduces with increasing Reynolds numbers. The results also indicate that the 60° ∨-shaped rib and 60° parallel rib perform better than the 60° crossed rib and 90° rib, regardless of wall heat flux ratio and Reynolds number.


1968 ◽  
Vol 1 (2) ◽  
pp. 120-124 ◽  
Author(s):  
NOBUO MITSUISHI ◽  
OSAMU MIYATAKE ◽  
MITSURU YANAGIDA

2019 ◽  
Vol 23 (5 Part B) ◽  
pp. 3153-3164 ◽  
Author(s):  
Hamid Mohammadiun ◽  
Vahid Amerian ◽  
Mohammad Mohammadiun ◽  
Iman Khazaee ◽  
Mohsen Darabi ◽  
...  

The steady-state, viscous flow and heat transfer of nanofluid in the vicinity of an axisymmetric stagnation point of a stationary cylinder with constant wall heat flux is investigated. The impinging free-stream is steady and with a constant strain rate, k ?. Exact solution of the Navier-Stokes equations and energy equation are derived in this problem. A reduction of these equations is obtained by use of appropriate transformations introduced in this research. The general self-similar solution is obtained when the wall heat flux of the cylinder is constant. All the previous solutions are presented for Reynolds number Re = k ?a2/2n f ranging from 0.1 to 1000, selected values of heat flux and selected values of particle fractions where a is cylinder radius and n f is kinematic viscosity of the base fluid. For all Reynolds numbers, as the particle fraction increases, the depth of diffusion of the fluid velocity field in radial direction, the depth of the diffusion of the fluid velocity field in z-direction, shear-stresses and pressure function decreases. However, the depth of diffusion of the thermal boundary-layer increases. It is clear by adding nanoparticles to the base fluid there is a significant enhancement in Nusselt number and heat transfer.


2015 ◽  
Vol 31 (6) ◽  
pp. 733-743 ◽  
Author(s):  
K. Ramadan ◽  
I. Tlili

ABSTRACTHeat convection of a microchannel gas flow with constant wall heat flux boundary condition is investigated numerically, considering viscous dissipation and axial conduction. The shear work due to the slipping fluid at the wall is incorporated in the analysis. An analytical solution for fully developed conditions is also derived. The effect of the shear work on heat transfer is quantified through a comparative analysis in both the entrance- and the fully developed- regions. The analysis shows that the shear work effect on heat transfer is considerable, and neglecting this term leads to an overestimation of the Nusselt number in gas heating and an underestimation in gas cooling. The over/under estimation of the Nusselt number is dependent on both the Knudsen number and the Brinkman number. The results presented also demonstrate the significance of the shear work in the developing flow region. It is shown that in the developing flow region the Nusselt number is less sensitive to viscous dissipation when the shear work is neglected. It can be concluded from this study that the shear work effect is significant and neglecting it can lead to considerable errors in microchannel flow heat transfer.


Sign in / Sign up

Export Citation Format

Share Document