Heat transfer and pressure drop in laterally perforated-finned heat sinks across different flow regimes

Author(s):  
Mohammad Reza Shaeri ◽  
Richard Bonner
Author(s):  
Weilin Qu ◽  
Seok-Mann Yoon ◽  
Issam Mudawar

Knowledge of flow pattern and flow pattern transitions is essential to the development of reliable predictive tools for pressure drop and heat transfer in two-phase micro-channel heat sinks. In the present study, experiments were conducted with adiabatic nitrogen-water two-phase flow in a rectangular micro-channel having a 0.406 × 2.032 mm cross-section. Superficial velocities of nitrogen and water ranged from 0.08 to 81.92 m/s and 0.04 to 10.24 m/s, respectively. Flow patterns were first identified using high-speed video imaging, and still photos were then taken for representative patterns. Results reveal that the dominant flow patterns are slug and annular, with bubbly flow occurring only occasionally; stratified and churn flow were never observed. A flow pattern map was constructed and compared with previous maps and predictions of flow pattern transition models. Annual flow is identified as the dominant flow pattern for conditions relevant to two-phase micro-channel heat sinks, and forms the basis for development of a theoretical model for both pressure drop and heat transfer in micro-channels. Features unique to two-phase micro-channel flow, such as laminar liquid and gas flows, smooth liquid-gas interface, and strong entrainment and deposition effects are incorporated into the model. The model shows good agreement with experimental data for water-cooled heat sinks.


2004 ◽  
Vol 126 (2) ◽  
pp. 247-255 ◽  
Author(s):  
Duckjong Kim ◽  
Sung Jin Kim

In the present work, a compact modeling method based on a volume-averaging technique is presented. Its application to an analysis of fluid flow and heat transfer in straight fin heat sinks is then analyzed. In this study, the straight fin heat sink is modeled as a porous medium through which fluid flows. The volume-averaged momentum and energy equations for developing flow in these heat sinks are obtained using the local volume-averaging method. The permeability and the interstitial heat transfer coefficient required to solve these equations are determined analytically from forced convective flow between infinite parallel plates. To validate the compact model proposed in this paper, three aluminum straight fin heat sinks having a base size of 101.43mm×101.43mm are tested with an inlet velocity ranging from 0.5 m/s to 2 m/s. In the experimental investigation, the heat sink is heated uniformly at the bottom. The resulting pressure drop across the heat sink and the temperature distribution at its bottom are then measured and are compared with those obtained through the porous medium approach. Upon comparison, the porous medium approach is shown to accurately predict the pressure drop and heat transfer characteristics of straight fin heat sinks. In addition, evidence indicates that the entrance effect should be considered in the thermal design of heat sinks when Re Dh/L>∼O10.


Author(s):  
Suchismita Sarangi ◽  
Karthik K. Bodla ◽  
Suresh V. Garimella ◽  
Jayathi Y. Murthy

Conventional microchannel heat sinks provide good heat dissipation capability but are associated with high pressure drop and corresponding pumping power. The use of a manifold system that distributes the flow into the microchannels through multiple, alternating inlet and outlet pairs is investigated here. This manifold arrangement greatly reduces the pressure drop incurred due to the smaller flow paths, while simultaneously increasing the heat transfer coefficient by tripping the thermal boundary layers. A three-dimensional numerical model is developed and validated, to study the effect of various geometric parameters on the performance of the manifold microchannel heat sink. Apart from a deterministic analysis, a probabilistic optimization study is also performed. In the presence of uncertainties in the geometric and operating parameters of the system, this probabilistic optimization approach yields an optimal design that is also robust and reliable. Uncertainty-based optimization also yields auxiliary information regarding local and global sensitivities and helps identify the input parameters to which outputs are most sensitive. This information can be used to design improved experiments targeted at the most sensitive inputs. Optimization under uncertainty also provides a quantitative estimate of the allowable uncertainty in input parameters for an acceptable uncertainty in the relevant output parameters. The optimal geometric design parameters with uncertainties that maximize heat transfer coefficient while minimizing pressure drop for fixed input conditions are identified for a manifold microchannel heat sink. A comparison between the deterministic and probabilistic optimization results is also presented.


Author(s):  
Mohamed I. Hassan Ali ◽  
Oraib Al-Ketan ◽  
Mohamad Khalil ◽  
Nada Baobaid ◽  
Kamran Khan ◽  
...  

Abstract In this work, we extend our heat transfer performance study on our proposed new and novel 3D printable architected heat sinks with geometrically complex structures based on triply periodic minimal surfaces (TPMS). Computational fluid dynamics (CFD) modeling is used to assess the effect of porosity distribution, heat load, and isothermal boundary condition on the performance of the proposed TPMS-based heat sinks in active cooling using natural and forced convection heat transfer environments. The convection heat transfer coefficient, surface temperature, pressure drop are predicted using CFD method. The CFD model is validated using experimental results for the pressure drop and is verified by standard analytical results. Three TPMS structures are investigated in different orientations. Dimensionless heat transfer groups are developed to globalize the heat transfer performance of the proposed heat sinks.


Author(s):  
S Emami ◽  
MH Dibaei Bonab ◽  
M Mohammadiun ◽  
H Mohammadiun ◽  
M Sadi

Few papers investigated the effect of different nano-fluids and geometrical parameters of the micro channels on the performance of heat sinks. In this study, Nusselt number and pressure drop are investigated in differential geometry and Reynolds numbers. Then the effect of the micro-channel is studied for different heat flux. The results show that hexagonal micro-channels represents a better performance than the rectangular and the heat transfer of without using nano-particles in the hexagonal cross-section is about 9% higher than the rectangular cross-section and with the presence of nanoparticles (Al2O3 - CUO- TiO2, φ  =  4%), heat transfer is about 30 to 40% higher than the base liquid.


2004 ◽  
Vol 126 (3) ◽  
pp. 288-300 ◽  
Author(s):  
Weilin Qu ◽  
Seok-Mann Yoon ◽  
Issam Mudawar

Knowledge of flow pattern and flow pattern transitions is essential to the development of reliable predictive tools for pressure drop and heat transfer in two-phase micro-channel heat sinks. In the present study, experiments were conducted with adiabatic nitrogen-water two-phase flow in a rectangular micro-channel having a 0.406×2.032mm2 cross-section. Superficial velocities of nitrogen and water ranged from 0.08 to 81.92 m/s and 0.04 to 10.24 m/s, respectively. Flow patterns were first identified using high-speed video imaging, and still photos were then taken for representative patterns. Results reveal the dominant flow patterns are slug and annular, with bubbly flow occurring only occasionally; stratified and churn flow were never observed. A flow pattern map was constructed and compared with previous maps and predictions of flow pattern transition models. Features unique to two-phase micro-channel flow were identified and employed to validate key assumptions of an annular flow boiling model that was previously developed to predict pressure drop and heat transfer in two-phase micro-channel heat sinks. This earlier model was modified based on new findings from the adiabatic two-phase flow study. The modified model shows good agreement with experimental data for water-cooled heat sinks.


2002 ◽  
Vol 124 (3) ◽  
pp. 155-163 ◽  
Author(s):  
A. Bhattacharya ◽  
R. L. Mahajan

In this paper, we present recent experimental results on forced convective heat transfer in novel finned metal foam heat sinks. Experiments were conducted on aluminum foams of 90 percent porosity and pore size corresponding to 5 PPI (200 PPM) and 20 PPI (800 PPM) with one, two, four and six fins, where PPI (PPM) stands for pores per inch (pores per meter) and is a measure of the pore density of the porous medium. All of these heat sinks were fabricated in-house. The forced convection results show that heat transfer is significantly enhanced when fins are incorporated in metal foam. The heat transfer coefficient increases with increase in the number of fins until adding more fins retards heat transfer due to interference of thermal boundary layers. For the 20 PPI samples, this maximum was reached for four fins. For the 5 PPI heat sinks, the trends were found to be similar to those for the 20 PPI heat sinks. However, due to larger pore sizes, the pressure drop encountered is much lower at a particular air velocity. As a result, for a given pressure drop, the heat transfer coefficient is higher compared to the 20 PPI heat sink. For example, at a Δp of 105 Pa, the heat transfer coefficients were found to be 1169W/m2-K and 995W/m2-K for the 5 PPI and 20 PPI 4-finned heat sinks, respectively. The finned metal foam heat sinks outperform the longitudinal finned and normal metal foam heat sinks by a factor between 1.5 and 2, respectively. Finally, an analytical expression is formulated based on flow through an open channel and incorporating the effects of thermal dispersion and interfacial heat transfer between the solid and fluid phases of the porous medium. The agreement of the proposed relation with the experimental results is promising.


2005 ◽  
Vol 128 (3) ◽  
pp. 273-280 ◽  
Author(s):  
Xiang-Qi Wang ◽  
Christopher Yap ◽  
Arun S. Mujumdar

Heat sinks with radial and constructal branching microchannel networks with loops are examined numerically. Radial and constructal networks are embedded in disk-shaped heat sinks. Constructal nets with loops are found to be more robust than the radial ones, when one or more channel segments are blocked. Since complex constructal networks would involve problems in manufacturing, constructal channel nets with loops may be a better choice in engineering applications. Networks with loops and without loops are compared. Results show that the constructal nets with loops provide a great advantage when the structure experiences accidental damage in one or more subchannel segments, since the loop assures the continuity of flow. In spite of blockage, the performance of the network has only a small drop considering the increased pressure drop.


Sign in / Sign up

Export Citation Format

Share Document