MAGNETO-CONVECTIVE INSTABILITY IN A HORIZONTAL VISCOELASTIC NANOFLUID SATURATED POROUS LAYER

2016 ◽  
Vol 78 (12-3) ◽  
Author(s):  
Norazuwin Najihah Mat Tahir ◽  
Fuziyah Ishak ◽  
Seripah Awang Kechil

Nanofluids have been shown experimentally to have high thermal conductivity. In this study, the convective instabilities in a horizontal viscoelastic nanofluid saturated by porous layer under the influences of gravity and magnetic field are investigated. The linear stability theory is used for the transformation of the partial differential equations to system of ordinary differential equations through infinitesimal perturbations, scaling, linearization and method of normal modes with two-dimensional periodic waves. The system is solved analytically for the closed form solution of the thermal Darcy-Rayleigh number by using the Galerkin-type weighted residuals method to investigate the onset of both stationary and oscillatory convection. The effects of the scaled stress relaxation parameter, scaled strain retardation parameter and Chandrasekhar number on the stability of the system are investigated. The scaled strain retardation parameter stabilizes while the scaled stress relaxation parameter destabilizes the nanofluid system. The system in the presence of magnetic field is more stable than the system in the absence of magnetic field. 

Author(s):  
G. N. Sekhar ◽  
G. Jayalatha

A linear stability analysis of convection in viscoelastic liquids with temperature-dependent viscosity is studied using normal modes and Galerkin method. Stationary convection is shown to be the preferred mode of instability when the ratio of strain retardation parameter to stress relaxation parameter (elasticity ratio) is greater than unity. When the ratio is less than unity the possibility of oscillatory convection is shown to arise. Oscillatory convection is studied numerically for Rivlin-Ericksen, Walters B′, Maxwell and Jeffreys liquids by considering free-free and rigid-free isothermal/adiabatic boundaries. It is found that there is a tight coupling between the Rayleigh and Marangoni numbers, with an increase in one resulting in a decrease in the other. The effect of variable viscosity parameter is shown to destabilize the system. The problem reveals the stabilizing nature of strain retardation parameter and destabilizing nature of stress relaxation parameter, on the onset of convection. The Maxwell liquids are found to be more unstable than the one subscribing to Jeffreys description whereas the Rivlin-Ericksen and Walters B′ liquids are comparatively more stable. Rigid-free adiabatic boundary combination is found to give rise to a most stable system, whereas the free isothermal free adiabatic combination gives rise to a most unstable system. The problem has applications in non-isothermal systems having viscoelastic liquids as working media.


2018 ◽  
Vol 388 ◽  
pp. 223-245 ◽  
Author(s):  
Rohit Sharma ◽  
Syed Modassir Hussain ◽  
Garima Mishra

An investigation has been performed to analyze the impacts of Soret and Dufour on natural convective and heat absorbing flow of viscoelastic radiative nanofluid driven by a linearly stretched sheet considering inclined magnetic field. By making use of suitable linear transformations, the mathematical equations of problem are changed into the extremely non-linear coupled system of ordinary differential equations. Further, solutions of these differential equations are obtained by implementing GFEM (Galerkin finite element method). The consequence of various controlling pertinent parameters on nanofluid velocity, solutal concentration, temperature and nanofluid concentration are illustrated by means of various graphs while from engineering aspect numerical values of the shear stress, wall temperature gradient, solutal and nanoparticles concentration rate at the stretched sheet are presented in different tables. The numerical results are compared for mono and double diffusive nanofluids which yield that the aligned magnetic field, viscoelasticity, solutal and Brownian diffusivity have significant impacts on the flow field. The reliability of implemented method is authenticated by comparing our results with the previously published results under certain conditions, which signifies the correctness of the implemented method. The present investigation is applicable in several industrial processes such as coolant application, nano-drug delivery, cooling of microchip, heat exchanger technology, biological fluid movement and oceanography etc.Keywords: Magnetic field; Viscoelastic nanofluid; Thermal radiation; Heat absorption


Fluids ◽  
2019 ◽  
Vol 4 (4) ◽  
pp. 191
Author(s):  
Florinda Capone ◽  
Roberta De Luca ◽  
Maurizio Gentile

The instability of a vertical fluid motion (throughflow) in a binary mixture saturating a horizontal porous layer, uniformly heated from below, uniformly salted from below by one salt and permeated by an imposed uniform magnetic field H , normal to the layer, is analyzed. By employing the order-1 Galerkin weighted residuals method, the critical Rayleigh numbers for the onset of steady or oscillatory instability, have been determined.


2019 ◽  
Vol 20 (5) ◽  
pp. 502 ◽  
Author(s):  
Aaqib Majeed ◽  
Ahmed Zeeshan ◽  
Farzan Majeed Noori ◽  
Usman Masud

This article is focused on Maxwell ferromagnetic fluid and heat transport characteristics under the impact of magnetic field generated due to dipole field. The viscous dissipation and heat generation/absorption are also taken into account. Flow here is instigated by linearly stretchable surface, which is assumed to be permeable. Also description of magneto-thermo-mechanical (ferrohydrodynamic) interaction elaborates the fluid motion as compared to hydrodynamic case. Problem is modeled using continuity, momentum and heat transport equation. To implement the numerical procedure, firstly we transform the partial differential equations (PDEs) into ordinary differential equations (ODEs) by applying similarity approach, secondly resulting boundary value problem (BVP) is transformed into an initial value problem (IVP). Then resulting set of non-linear differentials equations is solved computationally with the aid of Runge–Kutta scheme with shooting algorithm using MATLAB. The flow situation is carried out by considering the influence of pertinent parameters namely ferro-hydrodynamic interaction parameter, Maxwell parameter, suction/injection and viscous dissipation on flow velocity field, temperature field, friction factor and heat transfer rate are deliberated via graphs. The present numerical values are associated with those available previously in the open literature for Newtonian fluid case (γ 1 = 0) to check the validity of the solution. It is inferred that interaction of magneto-thermo-mechanical is to slow down the fluid motion. We also witnessed that by considering the Maxwell and ferrohydrodynamic parameter there is decrement in velocity field whereas opposite behavior is noted for temperature field.


The influence of the earth’s magnetic field on the propagation of wireless waves in the ionosphere has stimulated interest in the problem of the propagation of electromagnetic waves through a non-isotropic medium which is stratified in planes. Although the differential equations of such a medium have been elegantly deduced by Hartree,f it appears that no solution of them has yet been published for a medium which is both non-isotropic and non-homogeneous. Thus the work of Gans and Hartree dealt only with a stratified isotropic medium, while in the mathematical theory of crystal-optics the non-isotropic medium is always assumed to be homogeneous. In the same way Appleton’s magneto-ionic theory of propagation in an ionized medium under the influence of a magnetic field is confined to consideration of the “ characteristic ”waves which can be propagated through a homogeneous medium without change of form. In applying to stratified non-isotropic media these investigations concerning homogeneous non-isotropic media difficulty arises from the fact that the polarizations of the characteristic waves in general vary with the constitution of the medium, and it is not at all obvious that there exist waves which are propagated independently through the stratified medium and which are approximately characteristic at each stratum. The existence of such waves has usually been taken for granted, although for the ionosphere doubt has been cast upon this assumption by Appleton and Naismith, who suggest that we might “ expect the components ( i. e ., characteristic waves) to be continually splitting and resplitting”, even if the increase of electron density “ takes place slowly with increase of height”. It is clear that, until the existence of independently propagated approximately characteristic waves has been established, at any rate for a slowly-varying non-isotropic medium, no mathematical justification exists for applying Appleton's magnetoionic theory to the ionosphere. It is with the provision of this justification that we are primarily concerned in the present paper. This problem has been previously considered by Försterling and Lassen,f but we feel that their work does not carry conviction because they did not base their calculations on the differential equations for a non-homo-geneous medium, and were apparently unable to deal with the general case in which the characteristic polarizations vary with the constitution of the medium.


2021 ◽  
Vol 21 (2) ◽  
pp. 569-588
Author(s):  
KINZA ARSHAD ◽  
MUHAMMAD ASHRAF

In the present work, two dimensional flow of a hyperbolic tangent fluid with chemical reaction and viscous dissipation near a stagnation point is discussed numerically. The analysis is performed in the presence of magnetic field. The governing partial differential equations are converted into non-linear ordinary differential equations by using appropriate transformation. The resulting higher order non-linear ordinary differential equations are discretized by finite difference method and then solved by SOR (Successive over Relaxation parameter) method. The impact of the relevant parameters is scrutinized by plotting graphs and discussed in details. The main conclusion is that the large value of magnetic field parameter and wiessenberg numbers decrease the streamwise and normal velocity while increase the temperature distribution. Also higher value of the Eckert number Ec results in increases in temperature profile.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Shen Gao ◽  
Shixiu Chen ◽  
Zengchao Ji ◽  
Wei Tian ◽  
Jun Chen

On the basis of fluid approximation, an improved version of the model for the description of dc glow discharge plasma in the axial magnetic field was successfully developed. The model has yielded a set of analytic formulas for the physical quantities concerned from the electron and ion fluids equations and Poisson equation. The calculated results satisfy the practical boundary conditions. Results obtained from the model reveal that although the differential equations under the condition of axial magnetic field are consistent with the differential equations without considering the magnetic field, the solution of the equations is not completely consistent. The results show that the stronger the magnetic field, the greater the plasma density.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Mekonnen Shiferaw Ayano ◽  
Stephen T. Sikwila ◽  
Stanford Shateyi

Mixed convection flow through a rectangular duct with at least one of the sides of the walls of the rectangle being isothermal under the influence of transversely applied magnetic field has been analyzed numerically in this study. The governing differential equations of the problem have been transformed into a system of nondimensional differential equations and then solved numerically. The dimensionless velocity, microrotation components, and temperature profiles are displayed graphically showing the effects of various values of the parameters present in the problem. The results showed that the flow field is notably influenced by the considered parameters. It is found that increasing the aspect ratio increases flow reversal, commencement of the flow reversal is observed after some critical value, and the applied magnetic field increases the flow reversal in addition to flow retardation. The microrotation components flow in opposite direction; also it is found that one component of the microrotation will show no rotational effect around the center of the duct.


Author(s):  
C. Israel-Cookey ◽  
L. Ebiwareme ◽  
E. Amos

In this research article, the effect of Vadasz number on magnetoconvection in a Darcy Porous Layer with concentration based internal heating is studied. The flow is governed by the Oberbeck-Boussineq model for Newtonian fluid. The stability analysis method based on the perturbation of infinitesimal amplitude is carried out using the normal mode analysis. The onset criterion for both the stationary and oscillatory convection on the stability of system is obtained. The analysis examines the effects of pertinent parameters on the stability of the system: magnetic field parameter, solutal Rayleigh number, Lewis number and Vadasz number. The result show that, internal heat parameter,  and Lewis number, , hastens the onset of instability in the system, whereas magnetic field, , Vadasz number,  and solutal Rayleigh number,  delay the onset of instability.


Author(s):  
S. O. Ajibola ◽  
E. O. Oghre ◽  
A. G. Ariwayo ◽  
P. O. Olatunji

By fractional generalised Boussinesq equations we mean equations of the form \begin{equation} \Delta\equiv D_{t}^{2\alpha}-[\mathcal{N}(u)]_{xx}-u_{xxxx}=0, \: 0<\alpha\le1,\label{main}\nonumber \end{equation} where $\mathcal{N}(u)$ is a differentiable function and $\mathcal{N}_{uu}\ne0$ (to ensure nonlinearity). In this paper we lay emphasis on the cubic Boussinesq and Boussinesq-like equations of fractional order and we apply the Laplace homotopy analysis method (LHAM) for their rational and solitary wave solutions respectively. It is true that nonlinear fractional differential equations are often difficult to solve for their {\em exact} solutions and this single reason has prompted researchers over the years to come up with different methods and approach for their {\em analytic approximate} solutions. Most of these methods require huge computations which are sometimes complicated and a very good knowledge of computer aided softwares (CAS) are usually needed. To bridge this gap, we propose a method that requires no linearization, perturbation or any particularly restrictive assumption that can be easily used to solve strongly nonlinear fractional differential equations by hand and simple computer computations with a very quick run time. For the closed form solution, we set $\alpha =1$ for each of the solutions and our results coincides with those of others in the literature.


Sign in / Sign up

Export Citation Format

Share Document