Falkner-Skan time-dependent bioconvrction flow of cross nanofluid with nonlinear thermal radiation, activation energy and melting process

Author(s):  
Hassan Waqas ◽  
Shan Ali Khan ◽  
Sami Ullah Khan ◽  
M. Ijaz Khan ◽  
Seifedine Kadry ◽  
...  
Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1019
Author(s):  
Zahra Abdelmalek ◽  
Kamel Al-Khaled ◽  
Hassan Waqas ◽  
A. Aldabesh ◽  
Sami Ullah Khan ◽  
...  

Ferro liquids derive their magneto–viscous behavior from the suspended magnetic nanomaterial that enables tunable changes in temperature, as well as nano-structured fluid characteristics. A theoretical model that depicts the bioconvection flow of cross nanofluid with a magnetic dipole subjected to a cylindrical surface was developed and numerically solved. The model encountered nonlinear thermal radiation, activation energy, and second order slip. The flow equations were reduced and are presented in dimensionless forms, and they were solved numerically using the shooting technique, which is a built-in feature of MatLab. The model encountered symmetrical constraints for predicting velocity, temperature, concentration, and gyrotactic microorganism distribution and profiles. Moreover, the numerical values were computed for local Nusselt number, local Sherwood number, and motile density number against each physical parameter.


Author(s):  
Usman ◽  
M. Ijaz Khan ◽  
Sami Ullah Khan ◽  
Abuzar Ghaffari ◽  
Yu-Ming Chu ◽  
...  

This communication aims to develop the thermal flow model for generalized micropolar nanofluid with insensitive applications of bioconvection, activation energy and nonlinear thermal radiation. The generalized micropolar fluid model is the extension of traditional micropolar fluid model with viscoelastic relations. The viscous nature of non-Newtonian micropolar material can be successfully predicted with help of this model. The motivating idea for considering the motile microorganisms is to control the nanoparticles suspension effectively. The higher order slip relations are incorporated to examine the bio-convective phenomenon. The simplified coupled equations in terms of non-dimensional variables are numerically treated with shooting scheme. The reliable graphical outcomes are presented for flow parameters governed to the transported problem. The flow pattern of each parameter is highlighted in view of viscous nature of micropolar fluid.


2020 ◽  
Vol 21 ◽  
pp. 100749 ◽  
Author(s):  
Katta Ramesh ◽  
Sami Ullah Khan ◽  
Mohammed Jameel ◽  
M. Ijaz Khan ◽  
Yu-Ming Chu ◽  
...  

Author(s):  
M. Ijaz Khan ◽  
Salman Ahmad ◽  
T. Hayat ◽  
A. Alsaedi

Abstract The main theme of this paper is to investigate entropy generation analysis for unsteady three-dimensional flow of viscous (Newtonian) fluid between two horizontal parallel plates. Lower plate is porous and stretching while upper plate squeezed downward. Further effects of nonlinear thermal radiation, viscous dissipation, heat source/sink and activation energy are accounted. Entropy generation rate calculated in terms of thermal radiation, fluid diffusion and fluid friction. Transformations procedure used lead to reduction of PDE’s into ordinary ones. Built-in-Shooting technique is used for the computational analysis. Impacts of different flow variables on temperature, velocity, concentration, volumetric entropy generation and Bejan number are discussed and presented through graphs. Temperature and concentration gradient are discussed numerically. It is examined from obtained results that velocity of liquid particle decays through larger estimation of squeezing parameter. It is also examined that temperature distribution enhances for higher estimation of radiative heat flux. Moreover temperature and concentration gradient increase for larger squeezing parameter.


Sign in / Sign up

Export Citation Format

Share Document