Entropy Generation and Activation Energy Impact on Radiative Flow of Viscous Fluid in Presence of Binary Chemical Reaction

Author(s):  
M. Ijaz Khan ◽  
Salman Ahmad ◽  
T. Hayat ◽  
A. Alsaedi

Abstract The main theme of this paper is to investigate entropy generation analysis for unsteady three-dimensional flow of viscous (Newtonian) fluid between two horizontal parallel plates. Lower plate is porous and stretching while upper plate squeezed downward. Further effects of nonlinear thermal radiation, viscous dissipation, heat source/sink and activation energy are accounted. Entropy generation rate calculated in terms of thermal radiation, fluid diffusion and fluid friction. Transformations procedure used lead to reduction of PDE’s into ordinary ones. Built-in-Shooting technique is used for the computational analysis. Impacts of different flow variables on temperature, velocity, concentration, volumetric entropy generation and Bejan number are discussed and presented through graphs. Temperature and concentration gradient are discussed numerically. It is examined from obtained results that velocity of liquid particle decays through larger estimation of squeezing parameter. It is also examined that temperature distribution enhances for higher estimation of radiative heat flux. Moreover temperature and concentration gradient increase for larger squeezing parameter.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fazle Mabood ◽  
Anum Shafiq ◽  
Waqar Ahmed Khan ◽  
Irfan Anjum Badruddin

Purpose This study aims to investigate the irreversibility associated with the Fe3O4–Co/kerosene hybrid-nanofluid past a wedge with nonlinear radiation and heat source. Design/methodology/approach This study reports the numerical analysis of the hybrid nanofluid model under the implications of the heat source and magnetic field over a static and moving wedge with slips. The second law of thermodynamics is applied with nonlinear thermal radiation. The system that comprises differential equations of partial derivatives is remodeled into the system of differential equations via similarity transformations and then solved through the Runge–Kutta–Fehlberg with shooting technique. The physical parameters, which emerges from the derived system, are discussed in graphical formats. Excellent proficiency in the numerical process is analyzed by comparing the results with available literature in limiting scenarios. Findings The significant outcomes of the current investigation are that the velocity field uplifts for higher velocity slip and magnetic strength. Further, the heat transfer rate is reduced with the incremental values of the Eckert number, while it uplifts with thermal slip and radiation parameters. An increase in Brinkmann’s number uplifts the entropy generation rate, while that peters out the Bejan number. The results of this study are of importance involving in the assessment of the effect of some important design parameters on heat transfer and, consequently, on the optimization of industrial processes. Originality/value This study is original work that reports the hybrid nanofluid model of Fe3O4–Co/kerosene.


Author(s):  
NS Shashikumar ◽  
K. Thriveni ◽  
Macha Madhu ◽  
B. Mahanthesh ◽  
BJ Gireesha ◽  
...  

The main theme of the current work is to investigate the flow and heat transport characteristics of non-Newtonian Williamson fluid in an inclined micro-channel along with entropy generation analysis. The significance of the thermal radiation, convective boundary condition, and multiple slip effects is explored. The entropy generation of the system has been analyzed by adopting the 2nd law of thermodynamics. The rheological expressions of the Williamson fluid model are also taken into account. The nonlinear system is tackled by using the finite element method. An appropriate comparison has been made with previously published results in the literature as a limiting case of the considered problem. The comparison confirmed an excellent agreement. Detailed discussion of the significance of effective parameters on Bejan number, entropy generation rate, temperature and velocity is presented through graphs. The numerical results portray that the entropy generation and Bejan number have escalating behavior to the higher value of angle of inclination. Furthermore, the Bejan number changing its behavior at two points for different values of Reynolds’ number.


2018 ◽  
Vol 8 (12) ◽  
pp. 2588 ◽  
Author(s):  
Sayer Alharbi ◽  
Abdullah Dawar ◽  
Zahir Shah ◽  
Waris Khan ◽  
Muhammad Idrees ◽  
...  

In this article, we have briefly examined the entropy generation in magnetohydrodynamic (MHD) Eyring–Powell fluid over an unsteady oscillating porous stretching sheet. The impact of thermal radiation and heat source/sink are taken in this investigation. The impact of embedded parameters on velocity function, temperature function, entropy generation rate, and Bejan number are deliberated through graphs, and discussed as well. By studying the entropy generation in magnetohydrodynamic Eyring–Powell fluid over an unsteady oscillating porous stretching sheet, the entropy generation rate is reduced with escalation in porosity, thermal radiation, and magnetic parameters, while increased with the escalation in Reynolds number. Also, the Bejan number is increased with the escalation in porosity and magnetic parameter, while increased with the escalation in thermal radiation parameter. The impact of skin fraction coefficient and local Nusselt number are discussed through tables. The partial differential equations are converted to ordinary differential equation with the help of similarity variables. The homotopy analysis method (HAM) is used for the solution of the problem. The results of this investigation agree, satisfactorily, with past studies.


Entropy ◽  
2018 ◽  
Vol 20 (12) ◽  
pp. 930 ◽  
Author(s):  
Muhammad Suleman ◽  
Muhammad Ramzan ◽  
Madiha Zulfiqar ◽  
Muhammad Bilal ◽  
Ahmad Shafee ◽  
...  

The present study characterizes the flow of three-dimensional viscoelastic magnetohydrodynamic (MHD) nanofluids flow with entropy generation analysis past an exponentially permeable stretched surface with simultaneous impacts of chemical reaction and heat generation/absorption. The analysis was conducted with additional effects nonlinear thermal radiation and convective heat and mass boundary conditions. Apposite transformations were considered to transform the presented mathematical model to a system of differential equations. Analytical solutions of the proposed model were developed via a well-known homotopy analysis scheme. The numerically calculated values of the dimensionless drag coefficient, local Nusselt number, and mass transfer Nusselt number are presented, with physical insights. The graphs depicting the consequences of numerous parameters on involved distributions with requisite deliberations were also a part of this model. It is seen that the Bejan number is an increasing function of the thermal radiation parameter.


2017 ◽  
Vol 374 ◽  
pp. 29-46 ◽  
Author(s):  
Ahmad Muhammad ◽  
Oluwole Daniel Makinde

This paper discusses the thermodynamics irreversibility in an unsteady hydromagnetic mixed convective flow of an electrically conducting optically dense fluid over a permeable vertical surface under the combined influence of thermal radiation, velocity slip, temperature jump, buoyancy force, viscous dissipation, Joule heating and magnetic field. The governing partial differential equations are reduced to ordinary differential equations by using similarity variable. A local similarity solution is obtained numerically using shooting technique coupled with Runge-Kutta Fehlberg integration method. The influence of various thermophysical parameters on velocity and temperature profiles, skin friction, Nusselt number, entropy generation rate and Bejan number are presented graphically and discussed quantitatively. It is found that velocity slip, surface injection and temperature jump can successfully reduce entropy generation rate in the presence of an applied magnetic field. A comparison of numerical solution is made with the exact solution under a special case scenario and excellent agreement is found.


2018 ◽  
Vol 387 ◽  
pp. 364-372 ◽  
Author(s):  
Oluwole Daniel Makinde ◽  
Adetayo Samuel Eegunjobi

In this paper, we conducted the thermodynamics first and second laws analyses on hydromagnetic boundary layer flow of an incompressible electrically conducting viscous fluid past a vertically stretching sheet embedded in a porous medium with heat source and thermal radiation. The governing equations describing the problem are converted to a system of nonlinear ordinary differential equations using appropriate similarity variables. Using shooting technique coupled with Runge-Kutta-Ferhlberg integration scheme, the model boundary value problem is numerically tackled. The parametric effects on fluid velocity, temperature, skin friction, Nusselt number, entropy generation rate and the Bejan number are presented graphically and discussed quantitatively. Our results revealed among others, that the entropy generation is enhanced by magnetic field, thermal radiation and heat source but lessened by increasing porous medium permeability and buoyancy force.


2021 ◽  
Vol 13 (3) ◽  
pp. 168781402110065
Author(s):  
Hu Ge-JiLe ◽  
Sumaira Qayyum ◽  
Faisal Shah ◽  
M Ijaz Khan ◽  
Sami Ullah Khan

The growing development in the thermal engineering and nano-technology, much attention has been paid on the thermal properties of nanoparticles which convey many applications in industrial, technological and medical era of sciences. The noteworthy applications of nano-materials included heat transfer enhancement, thermal energy, solar systems, cooling of electronics, controlling the heat mechanisms etc. Beside this, entropy generation is an optimized scheme which reflects significances in thermodynamics systems to control the higher energy efficiency. On this end, present work presents the slip flow of Jeffrey nanofluid over a stretching sheet with applications of activation energy and viscous dissipation. The entropy generation features along with Bejan number significance is also addressed in present analysis. Buongiorno model of nanofluid is used to discuss the heat and mass transfer. The formulated flow equations are attained into non-dimensional form. An appropriate ND MATHEMATICA built-in scheme is used to find the solution. The solution confirmation is verified by performing the error analysis. For developed flow model and impacted parameters, a comprehensive graphical analysis is performed. It is observed that slip phenomenon is used to decays the velocity profile. Temperature and concentration are in direct relation with Brownian motion parameter and activation energy respectively. Entropy and Bejan number have same results for greater diffusion parameter.


Author(s):  
Usman ◽  
M. Ijaz Khan ◽  
Sami Ullah Khan ◽  
Abuzar Ghaffari ◽  
Yu-Ming Chu ◽  
...  

This communication aims to develop the thermal flow model for generalized micropolar nanofluid with insensitive applications of bioconvection, activation energy and nonlinear thermal radiation. The generalized micropolar fluid model is the extension of traditional micropolar fluid model with viscoelastic relations. The viscous nature of non-Newtonian micropolar material can be successfully predicted with help of this model. The motivating idea for considering the motile microorganisms is to control the nanoparticles suspension effectively. The higher order slip relations are incorporated to examine the bio-convective phenomenon. The simplified coupled equations in terms of non-dimensional variables are numerically treated with shooting scheme. The reliable graphical outcomes are presented for flow parameters governed to the transported problem. The flow pattern of each parameter is highlighted in view of viscous nature of micropolar fluid.


Sign in / Sign up

Export Citation Format

Share Document