Study of homogeneous–heterogeneous reactions in bioconvection stagnation pointslip flow of Walter's-B nanofluid with nonlinear thermal radiation and activation energy

Author(s):  
Hassan Waqas ◽  
Sami Ullah Khan ◽  
M. Ijaz Khan ◽  
Faris Alzahrani ◽  
Sumaira Qayyum
Author(s):  
Usman ◽  
M. Ijaz Khan ◽  
Sami Ullah Khan ◽  
Abuzar Ghaffari ◽  
Yu-Ming Chu ◽  
...  

This communication aims to develop the thermal flow model for generalized micropolar nanofluid with insensitive applications of bioconvection, activation energy and nonlinear thermal radiation. The generalized micropolar fluid model is the extension of traditional micropolar fluid model with viscoelastic relations. The viscous nature of non-Newtonian micropolar material can be successfully predicted with help of this model. The motivating idea for considering the motile microorganisms is to control the nanoparticles suspension effectively. The higher order slip relations are incorporated to examine the bio-convective phenomenon. The simplified coupled equations in terms of non-dimensional variables are numerically treated with shooting scheme. The reliable graphical outcomes are presented for flow parameters governed to the transported problem. The flow pattern of each parameter is highlighted in view of viscous nature of micropolar fluid.


2020 ◽  
Vol 21 ◽  
pp. 100749 ◽  
Author(s):  
Katta Ramesh ◽  
Sami Ullah Khan ◽  
Mohammed Jameel ◽  
M. Ijaz Khan ◽  
Yu-Ming Chu ◽  
...  

Symmetry ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 295 ◽  
Author(s):  
Muhammad Suleman ◽  
Muhammad Ramzan ◽  
Shafiq Ahmad ◽  
Dianchen Lu ◽  
Taseer Muhammad ◽  
...  

The aim of the present study is to address the impacts of Newtonian heating and homogeneous–heterogeneous (h-h) reactions on the flow of Ag–H2O nanofluid over a cylinder which is stretched in a nonlinear way. The additional effects of magnetohydrodynamics (MHD) and nonlinear thermal radiation are also added features of the problem under consideration. The Shooting technique is betrothed to obtain the numerical solution of the problem which is comprised of highly nonlinear system ordinary differential equations. The sketches of different parameters versus the involved distributions are given with requisite deliberations. The obtained numerical results are matched with an earlier published work and an excellent agreement exists between both. From our obtained results, it is gathered that the temperature profile is enriched with augmented values radiation and curvature parameters. Additionally, the concentration field is a declining function of the strength of h-h reactions.


Sign in / Sign up

Export Citation Format

Share Document