scholarly journals A comprehensive experimental study regarding size dependence on thermal conductivity of graphene oxide nanosheet

Author(s):  
Yifan Li ◽  
Tong Zhang ◽  
Yuan Zhang ◽  
Chenggong Zhao ◽  
Niming Zheng ◽  
...  
Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2886
Author(s):  
Ramin Ranjbarzadeh ◽  
Raoudha Chaabane

This experimental study was carried out based on the nanotechnology approach to enhance the efficacy of engine oil. Atomic and surface structures of graphene oxide (GO) nanoparticles were investigated by using a field emission scanning electron microscope and X-ray diffraction. The nano lubricant was produced by using a two-step method. The stability of nano lubricant was analyzed through dynamic light scattering. Various properties such as thermal conductivity, dynamic viscosity, flash point, cloud point and freezing point were investigated and the results were compared with the base oil (Oil- SAE-50). The results show that the thermal conductivity of nano lubricant was improved compared to the base fluid. This increase was correlated with progressing temperature. The dynamic viscosity was increased by variations in the volume fraction and reached its highest value of 36% compared to the base oil. The cloud point and freezing point are critical factors for oils, especially in cold seasons, so the efficacy of nano lubricant was improved maximally by 13.3% and 12.9%, respectively, compared to the base oil. The flash point was enhanced by 8%, which remarkably enhances the usability of the oil. It is ultimately assumed that this nano lubricant to be applied as an efficient alternative in industrial systems.


1976 ◽  
Vol 17 (75) ◽  
pp. 79-98 ◽  
Author(s):  
E. M. Morris

AbstractThe results of regelation experiments, in which a single object is pulled through ice, cannot be applied directly to the problem of basal sliding in glaciers because the two systems have different geometries. When the force applied to a single object is small, impurities trapped in the regelation water-layer around the object inhibit the regelation process. At larger forces, above the Drake-Shreve transition point, impurities are shed in a trace behind the object. However, when ice moves over a series of obstacles a trace may exist above and below the transition point. The regelation velocity below the transition point is not reduced by the effect of trapped impurities. In an experiment in which brass cylingerrs of various cross-sections rotate in ice, the ratio between the expected regelation velocity, calculated using the basal-sliding theory of Nye, and the measured regelation velocity is 8±2, both above and below the transition point. The same ratio has been obtained by other workers with wires of similar thermal conductivity above the transition point. Measurements of température differences indicate that supercooling cannot be the main source of the unexpectedly low regelation velocities above the transition point.


Sign in / Sign up

Export Citation Format

Share Document