scholarly journals Data-driven modeling and control of droughts

2019 ◽  
Vol 52 (23) ◽  
pp. 54-60
Author(s):  
Marta Zaniolo ◽  
Matteo Giuliani ◽  
Andrea Castelletti
Author(s):  
D. P. Solomatine

Traditionally, management and control of water resources is based on behavior-driven or physically based models based on equations describing the behavior of water bodies. Since recently models built on the basis of large amounts of collected data are gaining popularity. This modeling approach we will call data-driven modeling; it borrows methods from various areas related to computational intelligence—machine learning, data mining, soft computing, etc. The chapter gives an overview of successful applications of several data-driven techniques in the problems of water resources management and control. The list of such applications includes: using decision trees in classifying flood conditions and water levels in the coastal zone depending on the hydrometeorological data, using artificial neural networks (ANN) and fuzzy rule-based systems for building controllers for real-time control of water resources, using ANNs and M5 model trees in flood control, using chaos theory in predicting water levels for ship guidance, etc. Conclusions are drawn on the applicability of the mentioned methods and the future role of computational intelligence in modeling and control of water resources.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 187
Author(s):  
Balázs Németh ◽  
Dániel Fényes ◽  
Zsuzsanna Bede ◽  
Péter Gáspár

This paper proposes enhanced prediction and control design methods for improving traffic flow with human-driven and automated vehicles. To achieve accurate prediction for the entire time horizon, data-driven and model-based prediction methods were integrated. The goal of the integration was to accurately predict the outflow of the traffic network, which was selected as the highway section in this paper. The proposed novel prediction method was used in the optimal design for calculating controlled inflows on highway ramps. The goal of the design was to reach the maximum outflow of the traffic network, even against disturbances on uncontrolled inflows of the network. The control design leads to an optimization problem based on the min–max principle, i.e., the traffic outflow is considered to be maximized by controlled inflows and to be minimized by uncontrolled inflows. The effectiveness of the prediction and the control methods through simulation examples are illustrated, i.e., traffic outflow can be maximized by the control system under various uncontrolled inflow values.


Sign in / Sign up

Export Citation Format

Share Document