scholarly journals From a classic Renault Twizy towards a low cost autonomous car prototype: a proof of concept

2020 ◽  
Vol 53 (2) ◽  
pp. 15161-15166
Author(s):  
Rodolfo Orjuela ◽  
Jean-Philippe Lauffenburger ◽  
Jonathan Ledy ◽  
Michel Basset ◽  
Joel Lambert ◽  
...  
Keyword(s):  
Low Cost ◽  
Author(s):  
Roberto J. López-Sastre ◽  
Marcos Baptista-Ríos ◽  
Francisco Javier Acevedo-Rodríguez ◽  
Soraya Pacheco-da-Costa ◽  
Saturnino Maldonado-Bascón ◽  
...  

In this paper, we present a new low-cost robotic platform that has been explicitly developed to increase children with neurodevelopmental disorders’ involvement in the environment during everyday living activities. In order to support the children and youth with both the sequencing and learning of everyday living tasks, our robotic platform incorporates a sophisticated online action detection module that is capable of monitoring the acts performed by users. We explain all the technical details that allow many applications to be introduced to support individuals with functional diversity. We present this work as a proof of concept, which will enable an assessment of the impact that the developed technology may have on the collective of children and youth with neurodevelopmental disorders in the near future.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Joyoung Lee ◽  
Zijia Zhong ◽  
Bo Du ◽  
Slobodan Gutesa ◽  
Kitae Kim

This paper presents a low-cost and energy-saving urban mobility monitoring system based on wireless sensor networks (WSNs). The primary components of the proposed sensor unit are a Bluetooth sensor and a Zigbee transceiver. Within the WSN, the Bluetooth sensor captures the MAC addresses of Bluetooth units equipped in mobile devices and car navigation systems. The Zigbee transceiver transmits the collected MAC addresses to a data center without any major communications infrastructures (e.g., fiber optics and 3G/4G network). A total of seven prototype sensor units have been deployed on roadway segments in Newark, New Jersey, for a proof of concept (POC) test. The results of the POC test show that the performance of the proposed sensor unit appears promising, resulting in 2% of data drop rates and an improved Bluetooth capturing rate.


2019 ◽  
Vol 73 ◽  
pp. 167-179 ◽  
Author(s):  
Rafaela C. de Freitas ◽  
Rodrigo Alves ◽  
Abel G. da Silva Filho ◽  
Ricardo E. de Souza ◽  
Byron L.D. Bezerra ◽  
...  

2021 ◽  
Author(s):  
Benjamin Secker

Use of the Internet of Things (IoT) is poised to be the next big advancement in environmental monitoring. We present the high-level software side of a proof-of-concept that demonstrates an end-to-end environmental monitoring system,<br><div>replacing Greater Wellington Regional Council’s expensive data loggers with low-cost, IoT centric embedded devices, and it’s supporting cloud platform. The proof-of-concept includes a Micropython-based software stack running on an ESP32 microcontroller. The device software includes a built-in webserver that hosts a responsive Web App for configuration of the device. Telemetry data is sent over Vodafone’s NB-IoT network and stored in Azure IoT Central, where it can be visualised and exported.</div><br>While future development is required for a production-ready system, the proof-of-concept justifies the use of modern IoT technologies for environmental monitoring. The open source nature of the project means that the knowledge gained can be re-used and modified to suit the use-cases for other organisations.


Micromachines ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 68 ◽  
Author(s):  
Madeshwaran Selvaraj ◽  
Kenichi Takahata

This paper reports an active catheter-tip device functionalized by integrating a temperature-responsive smart polymer onto a microfabricated flexible heater strip, targeting at enabling the controlled steering of catheters through complex vascular networks. A bimorph-like strip structure is enabled by photo-polymerizing a layer of poly(N-isopropylacrylamide) hydrogel (PNIPAM), on top of a 20 × 3.5 mm2 flexible polyimide film that embeds a micropatterned heater fabricated using a low-cost flex-circuit manufacturing process. The heater activation stimulates the PNIPAM layer to shrink and bend the tip structure. The bending angle is shown to be adjustable with the amount of power fed to the device, proving the device’s feasibility to provide the integrated catheter with a controlled steering ability for a wide range of navigation angles. The powered device exhibits uniform heat distribution across the entire PNIPAM layer, with a temperature variation of <2 °C. The operation of fabricated prototypes assembled on commercial catheter tubes demonstrates their bending angles of up to 200°, significantly larger than those reported with other smart-material-based steerable catheters. The temporal responses and bending forces of their actuations are also characterized to reveal consistent and reproducible behaviors. This proof-of-concept study verifies the promising features of the prototyped approach to the targeted application area.


RSC Advances ◽  
2020 ◽  
Vol 10 (45) ◽  
pp. 26853-26861
Author(s):  
Anusha Prabhu ◽  
Giri Nandagopal M. S. ◽  
Prakash Peralam Yegneswaran ◽  
Vijendra Prabhu ◽  
Ujjwal Verma ◽  
...  

A proof-of-concept unifying thread devices and smart-phone imaging for low-cost microbial detection based on simple colour change.


Author(s):  
Vladislav Kopman ◽  
Nicholas Cavaliere ◽  
Maurizio Porfiri

In this paper, we present the design and proof of concept of a streamlined, low-cost, and smooth-hulled underwater vehicle (MASUV-1). MASUV-1 utilizes an ad-hoc designed multi-directional thrust-vectoring system for steering and an entirely enclosed propulsion system, allowing for safe operation in the vicinity of marine mammals. Tests of the vehicle in a still water environment show high maneuverability at speeds comparable with similar torpedo-type class underwater vehicles.


2010 ◽  
Vol 21 (48) ◽  
pp. 485301 ◽  
Author(s):  
Sumita Santra ◽  
Syed Z Ali ◽  
Prasanta K Guha ◽  
Guofang Zhong ◽  
John Robertson ◽  
...  

Author(s):  
Ramon Farré ◽  
Miguel A. Rodríguez-Lázaro ◽  
Anh Tuan Dinh-Xuan ◽  
Martí Pons-Odena ◽  
Daniel Navajas ◽  
...  

High ambient temperature and humidity greatly increase the risk of hyperthermia and mortality, particularly in infants, who are especially prone to dehydration. World areas at high risk of heat stress include many of the low- and middle-income countries (LMICs) where most of their inhabitants have no access to air conditioning. This study aimed to design, evaluate, and test a novel low-cost and easy-to-assemble device aimed at preventing the risk of infant hyperthermia in LMICs. The device is based on optimizing negative heat transfer from a small amount of ice and transferring it directly to the infant by airflow of refrigerated air. As a proof of concept, a device was assembled mainly using recycled materials, and its performance was assessed under laboratory-controlled conditions in a climatic chamber mimicking realistic stress conditions of high temperature and humidity. The device, which can be assembled by any layperson using easily available materials, provided sufficient refrigerating capacity for several hours from just 1–2 kg of ice obtained from a domestic freezer. Thus, application of this novel device may serve to attenuate the adverse effects of heat stress in infants, particularly in the context of the evolving climatic change trends.


Sign in / Sign up

Export Citation Format

Share Document