Potential of the novel antiretroviral drug rilpivirine to modulate the expression and function of drug transporters and drug-metabolising enzymes in vitro

2013 ◽  
Vol 41 (5) ◽  
pp. 484-487 ◽  
Author(s):  
Johanna Weiss ◽  
Walter Emil Haefeli
2020 ◽  
Vol 72 (5) ◽  
pp. 1173-1194 ◽  
Author(s):  
Marek Drozdzik ◽  
Izabela Czekawy ◽  
Stefan Oswald ◽  
Agnieszka Drozdzik

Abstract Emerging information suggests that gastrointestinal and systemic pathology states may affect expression and function of membrane transporters in the gastrointestinal tract. Altered status of the transporters could affect drug as well as endogenous compounds handling with subsequent clinical consequences. It seems that in some pathologies, e.g., liver or kidney failure, changes in the intestinal transporter function provide compensatory functions, eliminating substrates excreted by dysfunctional organs. A literature search was conducted on Ovid and Pubmed databases to select relevant in vitro, animal and human studies that have reported expression, protein abundance and function of intestinal drug transporters. The accumulated data suggest that gastrointestinal pathology (inflammatory bowel disease, celiac disease, cholestasis) as well as systemic pathologies (kidney failure, liver failure, hyperthyroidism, hyperparathyroidism, obesity, diabetes mellitus, systemic inflammation and Alzheimer disease) may affect drug transporter expression and function in the gastrointestinal tract. The altered status of drug transporters may provide compensatory activity in handling endogenous compounds, affect local drug actions in the gastrointestinal tract as well as impact drug bioavailability. Graphic abstract


2020 ◽  
Vol 21 (16) ◽  
pp. 5737 ◽  
Author(s):  
Marek Droździk ◽  
Stefan Oswald ◽  
Agnieszka Droździk

Emerging information suggests that liver pathological states may affect the expression and function of membrane transporters in the gastrointestinal tract and the kidney. Altered status of the transporters could affect drug as well as endogenous compounds handling with subsequent clinical consequences. It seems that changes in intestinal and kidney transporter functions provide the compensatory activity of eliminating endogenous compounds (e.g., bile acids) generated and accumulated due to liver dysfunction. A literature search was conducted on the Ovid and PubMed databases to select relevant in vitro, animal and human studies that have reported expression, protein abundance and function of the gastrointestinal and kidney operating ABC (ATP-binding cassette) transporters and SLC (solute carriers) carriers. The accumulated data suggest that liver failure-associated transporter alterations in the gastrointestinal tract and kidney may affect drug pharmacokinetics. The altered status of drug transporters in those organs in liver dysfunction conditions may provide compensatory activity in handling endogenous compounds, affecting local drug actions as well as drug pharmacokinetics.


1996 ◽  
Vol 184 (5) ◽  
pp. 1939-1951 ◽  
Author(s):  
G Q Jia ◽  
J A Gonzalo ◽  
C Lloyd ◽  
L Kremer ◽  
L Lu ◽  
...  

We have cloned a novel mouse CC chemokine cDNA from the lung during an allergic inflammatory reaction. The protein encoded by this cDNA is chemotactic for eosinophils, monocytes, and lymphocytes in vitro and in vivo. Based on its similarities in sequence and function with other CC chemokines, we have named it mouse monocyte chemotactic protein-5 (mMCP-5). Under noninflammatory conditions, expression of mMCP-5 in the lymph nodes and thymus is constitutive and is generally restricted to stromal cells. Neutralization of mMCP-5 protein with specific antibodies during an allergic inflammatory reaction in vivo resulted in a reduction in the number of eosinophils that accumulated in the lung. Moreover, mMCP-5 mRNA expression in vivo is regulated differently from that of other major CC chemokines in the lung during the allergic reaction, including Eotaxin. The presence of lymphocytes is essential for expression of mMCP-5 by alveolar macrophages and smooth muscle cells in the lung, and the induction of mMCP-5 RNA occurs earlier than that of the eosinophil chemokine Eotaxin during allergic inflammation. In contrast to Eotaxin, mRNA for mMCP-5 can be produced by mast cells. From these results, we postulate that mMCP-5 plays a pivotal role during the early stages of allergic lung inflammation.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 556-556 ◽  
Author(s):  
Maulin Mukeshchandra Patel ◽  
Robert Silasi-Mansat ◽  
Ravi Shankar Keshari ◽  
Christopher L. Sansam ◽  
David A. Jones ◽  
...  

Abstract We used in vitro and in vivo models to characterize the physiological role of the novel protein encoded by C6ORF105. This gene's expression is androgen-responsive, and the encoded protein is predicted to be palmitoylated and membrane multi-spanning. Previously we showed that C6ORF105 expression co-regulates with tissue factor pathway inhibitor (TFPI)in human endothelial cells (EC); hence we named this protein "androgen-dependent TFPI-regulating protein" (ADTRP). Using in vitro cell-based TOP-Flash reporter assay we identified ADTRP as a negative regulator of canonical Wnt signaling in human cells. Overexpressing ADTRP in HEK293T cells inhibited the activity of beta-catenin/TCF-dependent transcriptional reporter, while silencing ADTRP increased the expression of Wnt target genes LEF-1, AXIN-2, IL-8 and DKK-2 in EA.hy926 EC line and HUVEC. Addition of LiCl showed that the effect of ADTRP was upstream of GSK3, therefore we focused the investigations on the Wnt signalosome proteins. ADTRP expression in HEK293T cells led to decreased phosphorylation of Wnt co-receptor LRP6, suggesting that ADTRP can affect this critical membrane-located event of Wnt signaling. Furthermore, ADTRP expression in reporter cells transfected with a constitutively phosphorylated form of LRP6 (LRP6DN mutant) inhibited Wnt3a- induced signaling, which suggests that ADTRP can interfere with events downstream of LRP6 phosphorylation, such as Axin-2 binding. Altogether, these data indicate that the Wnt signaling inhibitory activity of ADTRP takes place at the plasma membrane level. Site directed mutagenesis of the predicted palmitoylation site Cys61 showed that Wnt inhibitory effects of ADTRP require palmitoyl-mediated anchoring, highlighting the importance of proper membrane location of ADTRP for Wnt pathway inhibition. In vivo morpholino-based knockdown of adtrp in zebrafish embryos produced aberrant angiogenesis, defective branching and ruptured vessels, hemorrhage spots, pericardial edema and slow heart-beat, all reminiscent of defects caused by activation of canonical Wnt signaling. Indeed, adtrp knock down increased Wnt mediated lef-1 and pax-2a as well as mmp2 and mmp9 mRNA expression. Co-injection of ADTRP mRNA partially recovered the adtrp morpholino- induced morphologic abnormalities. Also, knock down of adtrp in a Wnt reporter zebrafish showed increased expression of ectopic Wnt signaling. Furthermore, our recently established Adtrp-/- mice also display some typical Wnt-mediated vascular defects, including: (i) abnormal patterning, increased capillary tortuosity, abnormal branching and increased density of the capillary network; (ii) dilated vessels, especially venules and veins; (iii) increased leakeage of permeability tracers (Evans blue and fluorescent dextran) without evident changes in endothelial junctions; (iv) hemorrhage spots in the skin, meningeal layers, heart, bladder and kidneys; (v) intravascular and interstitial fibrin deposition in the lung, liver and kidney. ADTRP deficiency decreased plasma TFPI antigen by ~2-times. Furthermore, TFPI antigen and anticoagulant activity in lung extracts and isolated lung EC were similarly decreased, which confirms our previous in vitro data. We aslo noticed increased tail bleeding time (>500 sec vs. 200 sec in WT littermates) and blood volume loss, which likely was caused by increased dilation of the tail vein. Gene expression analysis of whole organs showed upregulation of Wnt target genes involved in vascular contractility (Nos3), and extracellular matrix remodeling (Mmp2). Similarly, skin fibroblasts and lung EC isolated from Adtrp-/- mice showed increased expression of Wnt target genes (Lef-1, Cyclin D, Dkk2, c-Myc), which indicates constitutive activation of canonical Wnt signaling. In conclusion, we used genetic animal models and cell culture systems to show for the first time that the novel protein ADTRP plays major roles in vascular development and function. Lack of, or low levels of ADTRP associate with activation of coagulation and vascular development defects, which may be due, at least in part, to intrinsic high levels of ectopic canonical Wnt signaling. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 316-316
Author(s):  
Sari Prutchi Sagiv ◽  
Lilach Lifshitz ◽  
Ruth Orkin ◽  
Drorit Newmann ◽  
Moshe Mittelman

Abstract The immunomodulatory effects of erythropoietin (EPO) on the cellular and humoral compartments of the immune system have been described for some time; however, the mechanism of action by which EPO affects lymphocyte number and function has yet to be elucidated. Our search for possible mechanisms by which EPO affects these parameters led us to the novel discovery that EPO receptors (EPO-R) are expressed in dendritic cells (DCs), the most potent antigen presenting cells and most efficient T cell primers. Furthermore, we show that EPO has direct effects on the phenotype and function of human DCs. When added in vitro, EPO increased the percentage of peripheral blood originated DCs that express the co-stimulatory molecules CD80, CD86 and CD40. We also show that EPO up-regulates the level of expression of these molecules, as well as that of HLA-DR in monocyte-derived DCs. When added to immature DCs, EPO alone can induce their maturation. Furthermore, we demonstrate that EPO enhances DC function, as revealed by increased antigen uptake, secretion of interleukin (IL)-12 and stimulatory function in allogeneic mononuclear cell proliferation. We propose that DCs may represent a missing link which might explain previously observed immunomodulatory actions of EPO. Hence, our findings are of crucial importance and may open new clinical avenues for EPO in the optimization of ex-vivo DC-based vaccines, or when administered to patients in order to enhance immune system responses.


2011 ◽  
Vol 66 (4) ◽  
pp. 802-812 ◽  
Author(s):  
N. C. L. Zembruski ◽  
G. Buchel ◽  
L. Jodicke ◽  
M. Herzog ◽  
W. E. Haefeli ◽  
...  

Author(s):  
Nobutaka Hirokawa

In this symposium I will present our studies about the molecular architecture and function of the cytomatrix of the nerve cells. The nerve cell is a highly polarized cell composed of highly branched dendrites, cell body, and a single long axon along the direction of the impulse propagation. Each part of the neuron takes characteristic shapes for which the cytoskeleton provides the framework. The neuronal cytoskeletons play important roles on neuronal morphogenesis, organelle transport and the synaptic transmission. In the axon neurofilaments (NF) form dense arrays, while microtubules (MT) are arranged as small clusters among the NFs. On the other hand, MTs are distributed uniformly, whereas NFs tend to run solitarily or form small fascicles in the dendrites Quick freeze deep etch electron microscopy revealed various kinds of strands among MTs, NFs and membranous organelles (MO). These structures form major elements of the cytomatrix in the neuron. To investigate molecular nature and function of these filaments first we studied molecular structures of microtubule associated proteins (MAP1A, MAP1B, MAP2, MAP2C and tau), and microtubules reconstituted from MAPs and tubulin in vitro. These MAPs were all fibrous molecules with different length and formed arm like projections from the microtubule surface.


Sign in / Sign up

Export Citation Format

Share Document