scholarly journals Distinct expression and function of the novel mouse chemokine monocyte chemotactic protein-5 in lung allergic inflammation.

1996 ◽  
Vol 184 (5) ◽  
pp. 1939-1951 ◽  
Author(s):  
G Q Jia ◽  
J A Gonzalo ◽  
C Lloyd ◽  
L Kremer ◽  
L Lu ◽  
...  

We have cloned a novel mouse CC chemokine cDNA from the lung during an allergic inflammatory reaction. The protein encoded by this cDNA is chemotactic for eosinophils, monocytes, and lymphocytes in vitro and in vivo. Based on its similarities in sequence and function with other CC chemokines, we have named it mouse monocyte chemotactic protein-5 (mMCP-5). Under noninflammatory conditions, expression of mMCP-5 in the lymph nodes and thymus is constitutive and is generally restricted to stromal cells. Neutralization of mMCP-5 protein with specific antibodies during an allergic inflammatory reaction in vivo resulted in a reduction in the number of eosinophils that accumulated in the lung. Moreover, mMCP-5 mRNA expression in vivo is regulated differently from that of other major CC chemokines in the lung during the allergic reaction, including Eotaxin. The presence of lymphocytes is essential for expression of mMCP-5 by alveolar macrophages and smooth muscle cells in the lung, and the induction of mMCP-5 RNA occurs earlier than that of the eosinophil chemokine Eotaxin during allergic inflammation. In contrast to Eotaxin, mRNA for mMCP-5 can be produced by mast cells. From these results, we postulate that mMCP-5 plays a pivotal role during the early stages of allergic lung inflammation.

Blood ◽  
1999 ◽  
Vol 93 (2) ◽  
pp. 694-702
Author(s):  
Holger Petering ◽  
Otto Götze ◽  
Daniela Kimmig ◽  
Regina Smolarski ◽  
Alexander Kapp ◽  
...  

Chemokines play an important role in attracting granulocytes into sites of inflammation. Two chemokine subfamilies differ in their biologic activity for different granulocyte subsets. Whereas CXC chemokines such as interleukin-8 (IL-8) activate predominantly neutrophils, CC chemokines such as RANTES and eotaxin activate predominantly eosinophils. However, controversial results have been published in the past regarding the biologic role of IL-8 in eosinophil activation, particularly in allergic diseases. In this study, we investigated the functional evidence and expression of both IL-8 receptors, CXCR1 and CXCR2, on highly purified human eosinophils. In the first set of experiments, a chemotaxis assay was performed showing that IL-8 did not induce chemotaxis of eosinophils. In addition, and in contrast to neutrophils and lymphocytes, IL-8 did not induce a rapid and transient release of cytosolic free Ca2+([Ca2+]i) in eosinophils, even after preincubation with TH1- and TH2-like cytokines. To investigate whether neutrophil contamination might be responsible for the reported IL-8 effects on eosinophils, neutrophils were added to highly purified eosinophils from the same donor in different concentrations. Interestingly, as little as 5% of neutrophil contamination was sufficient to induce an increase of [Ca2+]iafter stimulation with IL-8. Flow cytometry experiments with monoclonal antibodies against both IL-8 receptors demonstrated no expression of CXCR1 and CXCR2 on eosinophils before or after cytokine activation. Reverse transcriptase-polymerase chain reaction experiments showed that eosinophils, in contrast to neutrophils and lymphocytes, did not express mRNA for CXCR1 and CXCR2. In summary, this study clearly demonstrates that CXCR1 and CXCR2 are not expressed on human eosinophils, even after priming with different bioactive cytokines. Because the CXC chemokine IL-8 did not induce in vitro effects on human eosinophils, IL-8 may also not contribute in vivo to the influx of eosinophil granulocytes into sites of allergic inflammation. Our results suggest that CC chemokines such as eotaxin, eotaxin-2, and MCP-4 are predominant for the activation of eosinophils.


Blood ◽  
2011 ◽  
Vol 118 (26) ◽  
pp. 6930-6938 ◽  
Author(s):  
Jennifer N. Lilla ◽  
Ching-Cheng Chen ◽  
Kaori Mukai ◽  
Maya J. BenBarak ◽  
Christopher B. Franco ◽  
...  

Abstract It has been reported that the intracellular antiapoptotic factor myeloid cell leukemia sequence 1 (Mcl-1) is required for mast cell survival in vitro, and that genetic manipulation of Mcl-1 can be used to delete individual hematopoietic cell populations in vivo. In the present study, we report the generation of C57BL/6 mice in which Cre recombinase is expressed under the control of a segment of the carboxypeptidase A3 (Cpa3) promoter. C57BL/6-Cpa3-Cre; Mcl-1fl/fl mice are severely deficient in mast cells (92%-100% reduced in various tissues analyzed) and also have a marked deficiency in basophils (58%-78% reduced in the compartments analyzed), whereas the numbers of other hematopoietic cell populations exhibit little or no changes. Moreover, Cpa3-Cre; Mcl-1fl/fl mice exhibited marked reductions in the tissue swelling and leukocyte infiltration that are associated with both mast cell- and IgE-dependent passive cutaneous anaphylaxis (except at sites engrafted with in vitro–derived mast cells) and a basophil- and IgE-dependent model of chronic allergic inflammation, and do not develop IgE-dependent passive systemic anaphylaxis. Our findings support the conclusion that Mcl-1 is required for normal mast cell and basophil development/survival in vivo in mice, and also suggest that Cpa3-Cre; Mcl-1fl/fl mice may be useful in analyzing the roles of mast cells and basophils in health and disease.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 556-556 ◽  
Author(s):  
Maulin Mukeshchandra Patel ◽  
Robert Silasi-Mansat ◽  
Ravi Shankar Keshari ◽  
Christopher L. Sansam ◽  
David A. Jones ◽  
...  

Abstract We used in vitro and in vivo models to characterize the physiological role of the novel protein encoded by C6ORF105. This gene's expression is androgen-responsive, and the encoded protein is predicted to be palmitoylated and membrane multi-spanning. Previously we showed that C6ORF105 expression co-regulates with tissue factor pathway inhibitor (TFPI)in human endothelial cells (EC); hence we named this protein "androgen-dependent TFPI-regulating protein" (ADTRP). Using in vitro cell-based TOP-Flash reporter assay we identified ADTRP as a negative regulator of canonical Wnt signaling in human cells. Overexpressing ADTRP in HEK293T cells inhibited the activity of beta-catenin/TCF-dependent transcriptional reporter, while silencing ADTRP increased the expression of Wnt target genes LEF-1, AXIN-2, IL-8 and DKK-2 in EA.hy926 EC line and HUVEC. Addition of LiCl showed that the effect of ADTRP was upstream of GSK3, therefore we focused the investigations on the Wnt signalosome proteins. ADTRP expression in HEK293T cells led to decreased phosphorylation of Wnt co-receptor LRP6, suggesting that ADTRP can affect this critical membrane-located event of Wnt signaling. Furthermore, ADTRP expression in reporter cells transfected with a constitutively phosphorylated form of LRP6 (LRP6DN mutant) inhibited Wnt3a- induced signaling, which suggests that ADTRP can interfere with events downstream of LRP6 phosphorylation, such as Axin-2 binding. Altogether, these data indicate that the Wnt signaling inhibitory activity of ADTRP takes place at the plasma membrane level. Site directed mutagenesis of the predicted palmitoylation site Cys61 showed that Wnt inhibitory effects of ADTRP require palmitoyl-mediated anchoring, highlighting the importance of proper membrane location of ADTRP for Wnt pathway inhibition. In vivo morpholino-based knockdown of adtrp in zebrafish embryos produced aberrant angiogenesis, defective branching and ruptured vessels, hemorrhage spots, pericardial edema and slow heart-beat, all reminiscent of defects caused by activation of canonical Wnt signaling. Indeed, adtrp knock down increased Wnt mediated lef-1 and pax-2a as well as mmp2 and mmp9 mRNA expression. Co-injection of ADTRP mRNA partially recovered the adtrp morpholino- induced morphologic abnormalities. Also, knock down of adtrp in a Wnt reporter zebrafish showed increased expression of ectopic Wnt signaling. Furthermore, our recently established Adtrp-/- mice also display some typical Wnt-mediated vascular defects, including: (i) abnormal patterning, increased capillary tortuosity, abnormal branching and increased density of the capillary network; (ii) dilated vessels, especially venules and veins; (iii) increased leakeage of permeability tracers (Evans blue and fluorescent dextran) without evident changes in endothelial junctions; (iv) hemorrhage spots in the skin, meningeal layers, heart, bladder and kidneys; (v) intravascular and interstitial fibrin deposition in the lung, liver and kidney. ADTRP deficiency decreased plasma TFPI antigen by ~2-times. Furthermore, TFPI antigen and anticoagulant activity in lung extracts and isolated lung EC were similarly decreased, which confirms our previous in vitro data. We aslo noticed increased tail bleeding time (>500 sec vs. 200 sec in WT littermates) and blood volume loss, which likely was caused by increased dilation of the tail vein. Gene expression analysis of whole organs showed upregulation of Wnt target genes involved in vascular contractility (Nos3), and extracellular matrix remodeling (Mmp2). Similarly, skin fibroblasts and lung EC isolated from Adtrp-/- mice showed increased expression of Wnt target genes (Lef-1, Cyclin D, Dkk2, c-Myc), which indicates constitutive activation of canonical Wnt signaling. In conclusion, we used genetic animal models and cell culture systems to show for the first time that the novel protein ADTRP plays major roles in vascular development and function. Lack of, or low levels of ADTRP associate with activation of coagulation and vascular development defects, which may be due, at least in part, to intrinsic high levels of ectopic canonical Wnt signaling. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1999 ◽  
Vol 93 (2) ◽  
pp. 694-702 ◽  
Author(s):  
Holger Petering ◽  
Otto Götze ◽  
Daniela Kimmig ◽  
Regina Smolarski ◽  
Alexander Kapp ◽  
...  

Abstract Chemokines play an important role in attracting granulocytes into sites of inflammation. Two chemokine subfamilies differ in their biologic activity for different granulocyte subsets. Whereas CXC chemokines such as interleukin-8 (IL-8) activate predominantly neutrophils, CC chemokines such as RANTES and eotaxin activate predominantly eosinophils. However, controversial results have been published in the past regarding the biologic role of IL-8 in eosinophil activation, particularly in allergic diseases. In this study, we investigated the functional evidence and expression of both IL-8 receptors, CXCR1 and CXCR2, on highly purified human eosinophils. In the first set of experiments, a chemotaxis assay was performed showing that IL-8 did not induce chemotaxis of eosinophils. In addition, and in contrast to neutrophils and lymphocytes, IL-8 did not induce a rapid and transient release of cytosolic free Ca2+([Ca2+]i) in eosinophils, even after preincubation with TH1- and TH2-like cytokines. To investigate whether neutrophil contamination might be responsible for the reported IL-8 effects on eosinophils, neutrophils were added to highly purified eosinophils from the same donor in different concentrations. Interestingly, as little as 5% of neutrophil contamination was sufficient to induce an increase of [Ca2+]iafter stimulation with IL-8. Flow cytometry experiments with monoclonal antibodies against both IL-8 receptors demonstrated no expression of CXCR1 and CXCR2 on eosinophils before or after cytokine activation. Reverse transcriptase-polymerase chain reaction experiments showed that eosinophils, in contrast to neutrophils and lymphocytes, did not express mRNA for CXCR1 and CXCR2. In summary, this study clearly demonstrates that CXCR1 and CXCR2 are not expressed on human eosinophils, even after priming with different bioactive cytokines. Because the CXC chemokine IL-8 did not induce in vitro effects on human eosinophils, IL-8 may also not contribute in vivo to the influx of eosinophil granulocytes into sites of allergic inflammation. Our results suggest that CC chemokines such as eotaxin, eotaxin-2, and MCP-4 are predominant for the activation of eosinophils.


2020 ◽  
pp. 1-14
Author(s):  
Shelby Shrigley ◽  
Fredrik Nilsson ◽  
Bengt Mattsson ◽  
Alessandro Fiorenzano ◽  
Janitha Mudannayake ◽  
...  

Background: Human induced pluripotent stem cells (hiPSCs) have been proposed as an alternative source for cell replacement therapy for Parkinson’s disease (PD) and they provide the option of using the patient’s own cells. A few studies have investigated transplantation of patient-derived dopaminergic (DA) neurons in preclinical models; however, little is known about the long-term integrity and function of grafts derived from patients with PD. Objective: To assess the viability and function of DA neuron grafts derived from a patient hiPSC line with an α-synuclein gene triplication (AST18), using a clinical grade human embryonic stem cell (hESC) line (RC17) as a reference control. Methods: Cells were differentiated into ventral mesencephalic (VM)-patterned DA progenitors using an established GMP protocol. The progenitors were then either terminally differentiated to mature DA neurons in vitro or transplanted into 6-hydroxydopamine (6-OHDA) lesioned rats and their survival, maturation, function, and propensity to develop α-synuclein related pathology, were assessed in vivo. Results: Both cell lines generated functional neurons with DA properties in vitro. AST18-derived VM progenitor cells survived transplantation and matured into neuron-rich grafts similar to the RC17 cells. After 24 weeks, both cell lines produced DA-rich grafts that mediated full functional recovery; however, pathological changes were only observed in grafts derived from the α-synuclein triplication patient line. Conclusion: This data shows proof-of-principle for survival and functional recovery with familial PD patient-derived cells in the 6-OHDA model of PD. However, signs of slowly developing pathology warrants further investigation before use of autologous grafts in patients.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Olanrewaju Ayodeji Durojaye ◽  
Nkwachukwu Oziamara Okoro ◽  
Arome Solomon Odiba

Abstract Background The novel coronavirus SARS-CoV-2 is currently a global threat to health and economies. Therapeutics and vaccines are in rapid development; however, none of these therapeutics are considered as absolute cure, and the potential to mutate makes it necessary to find therapeutics that target a highly conserved regions of the viral structure. Results In this study, we characterized an essential but poorly understood coronavirus accessory X4 protein, a core and stable component of the SARS-CoV family. Sequence analysis shows a conserved ~ 90% identity between the SARS-CoV-2 and previously characterized X4 protein in the database. QMEAN Z score of the model protein shows a value of around 0.5, within the acceptable range 0–1. A MolProbity score of 2.96 was obtained for the model protein and indicates a good quality model. The model has Ramachandran values of φ = − 57o and ψ = − 47o for α-helices and values of φ = − 130o and ψ = + 140o for twisted sheets. Conclusions The protein data obtained from this study provides robust information for further in vitro and in vivo experiment, targeted at devising therapeutics against the virus. Phylogenetic analysis further supports previous evidence that the SARS-CoV-2 is positioned with the SL-CoVZC45, BtRs-BetaCoV/YN2018B and the RS4231 Bat SARS-like corona viruses.


Author(s):  
Birte Weber ◽  
Niklas Franz ◽  
Ingo Marzi ◽  
Dirk Henrich ◽  
Liudmila Leppik

AbstractDue to the continued high incidence and mortality rate worldwide, there is a need to develop new strategies for the quick, precise, and valuable recognition of presenting injury pattern in traumatized and poly-traumatized patients. Extracellular vesicles (EVs) have been shown to facilitate intercellular communication processes between cells in close proximity as well as distant cells in healthy and disease organisms. miRNAs and proteins transferred by EVs play biological roles in maintaining normal organ structure and function under physiological conditions. In pathological conditions, EVs change the miRNAs and protein cargo composition, mediating or suppressing the injury consequences. Therefore, incorporating EVs with their unique protein and miRNAs signature into the list of promising new biomarkers is a logical next step. In this review, we discuss the general characteristics and technical aspects of EVs isolation and characterization. We discuss results of recent in vitro, in vivo, and patients study describing the role of EVs in different inflammatory diseases and traumatic organ injuries. miRNAs and protein signature of EVs found in patients with acute organ injury are also debated.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 884
Author(s):  
Marta Cherubini ◽  
Scott Erickson ◽  
Kristina Haase

Acting as the primary link between mother and fetus, the placenta is involved in regulating nutrient, oxygen, and waste exchange; thus, healthy placental development is crucial for a successful pregnancy. In line with the increasing demands of the fetus, the placenta evolves throughout pregnancy, making it a particularly difficult organ to study. Research into placental development and dysfunction poses a unique scientific challenge due to ethical constraints and the differences in morphology and function that exist between species. Recently, there have been increased efforts towards generating in vitro models of the human placenta. Advancements in the differentiation of human induced pluripotent stem cells (hiPSCs), microfluidics, and bioprinting have each contributed to the development of new models, which can be designed to closely match physiological in vivo conditions. By including relevant placental cell types and control over the microenvironment, these new in vitro models promise to reveal clues to the pathogenesis of placental dysfunction and facilitate drug testing across the maternal–fetal interface. In this minireview, we aim to highlight current in vitro placental models and their applications in the study of disease and discuss future avenues for these in vitro models.


Nutrients ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 123
Author(s):  
Natalia K. Kordulewska ◽  
Justyna Topa ◽  
Małgorzata Tańska ◽  
Anna Cieślińska ◽  
Ewa Fiedorowicz ◽  
...  

Lipopolysaccharydes (LPS) are responsible for the intestinal inflammatory reaction, as they may disrupt tight junctions and induce cytokines (CKs) secretion. Osthole has a wide spectrum of pharmacological effects, thus its anti-inflammatory potential in the LPS-treated Caco-2 cell line as well as in Caco-2/THP-1 and Caco-2/macrophages co-cultures was investigated. In brief, Caco-2 cells and co-cultures were incubated with LPS to induce an inflammatory reaction, after which osthole (150–450 ng/mL) was applied to reduce this effect. After 24 h, the level of secreted CKs and changes in gene expression were examined. LPS significantly increased the levels of IL-1β, -6, -8, and TNF-α, while osthole reduced this effect in a concentration-dependent manner, with the most significant decrease when a 450 ng/mL dose was applied (p < 0.0001). A similar trend was observed in changes in gene expression, with the significant osthole efficiency at a concentration of 450 ng/μL for IL1R1 and COX-2 (p < 0.01) and 300 ng/μL for NF-κB (p < 0.001). Osthole increased Caco-2 monolayer permeability, thus if it would ever be considered as a potential drug for minimizing intestinal inflammatory symptoms, its safety should be confirmed in extended in vitro and in vivo studies.


Sign in / Sign up

Export Citation Format

Share Document