Statistical optimization and modeling for color removal and COD reduction of reactive blue 19 dye by mesoporous chitosan-epichlorohydrin/kaolin clay composite

2020 ◽  
Vol 164 ◽  
pp. 4218-4230 ◽  
Author(s):  
Ali H. Jawad ◽  
Ahmed Saud Abdulhameed ◽  
Nurul Najwa Abd Malek ◽  
Zeid A. ALOthman
2021 ◽  
Author(s):  
Ali H. Jawad ◽  
Ahmed Saud Abdulhameed ◽  
Elmira Kashi ◽  
Zaher Mundher Yaseen ◽  
Zeid A. ALOthman ◽  
...  

Abstract Kaolin clay (KN) was employed as an inorganic filler to modify a cross-linked chitosan-glyoxal as Schiff’s-based chitosan composite derivative (CTS-GLY). The resulting (CTS-GLY/KN) was found to be a promising composite synthetic biopolymer that can be potentially utilized for color removal as well as COD reduction of an industrial anionic dye (remazol brilliant blue R, RBBR). The surface porosity, crystallinity, morphology, functionality, charge, and amine content of the CTS-GLY/KN were studied using BET, XRD, SEM, FTIR, pHpzc and pH-potentiometric titration analyses, respectively. Response surface methodology-Box-Behnken design (RSM-BBD) was used to optimize the impact of the main input factors on the color removal and COD reduction of RBBR. The adsorptive performance CTS-GLY/KN towards RBBR was well-defined by both Langmuir and Freundlich isotherm models with highest adsorption capacity of 447.1 mg/g at 30 ˚C. This finding reveals that CTS-GLY/KN can be utilized as a promising, feasible, and environmentally friendly composite-biosorbent for color removal and COD reduction of textile dyes from aqueous medium.


2002 ◽  
Vol 45 (12) ◽  
pp. 305-313 ◽  
Author(s):  
D. Orhon ◽  
H. Dulkadiroğlu ◽  
S. Doğruel ◽  
I. Kabdaşli ◽  
S. Sozen ◽  
...  

The study investigates the effect of partial ozonation of textile wastewater, both at the inlet (pre-ozonation) and the outlet (post-ozonation) of biological treatment, for the optimization of COD and color removals, both typical polluting parameters associated with the textile industry. Pre-ozonation provides at optimum contact time of 15 minutes 85% color removal, but only 19% COD reduction. Removal of the soluble inert COD fraction remains at 7%, indicating selective preference of ozone for simpler compounds. Post-ozonation is much more effective on the breakdown of refractory organic compounds and on color removal efficiency. Ozonation after biological treatment results in almost complete color removal and a 14% soluble inert COD reduction. The polishing effect of post-ozonation also proves quite attractive from an economical standpoint, involving approximately 50% of the ozone utilization at the same ozone flux rate and contact time, yet providing a lower soluble residual COD level.


Desalination ◽  
2013 ◽  
Vol 314 ◽  
pp. 89-95 ◽  
Author(s):  
Yinping Zheng ◽  
Sanchuan Yu ◽  
Shi Shuai ◽  
Qing Zhou ◽  
Qibo Cheng ◽  
...  

2018 ◽  
Vol 10 (8) ◽  
pp. 2929 ◽  
Author(s):  
Hyun-Hee Jang ◽  
Gyu-Tae Seo ◽  
Dae-Woon Jeong

Currently, the ozone (O3) oxidation efficiency in the treatment of waste soy sauce provides 34.2% color removal and a 27.4% reduction in its chemical oxygen demand (COD). To improve the O3 oxidation efficiency, hydrogen peroxide (H2O2) is used to cause a H2O2/O3 process. In H2O2/O3 process experiments, a previously optimized pH of 11 and applied O3 dose of 50 mg L−1 were used and the H2O2/O3 ratio was varied between 0.1 and 0.9 in intervals of 0.2. The results show that an H2O2/O3 ratio of 0.3 results in the highest efficiencies in terms of color removal (51.6%) and COD reduction (33.8%). Nanofiltration (NF) was used to pretreat the waste soy sauce to improve color removal and COD reduction. The results showed that NF with an NE-70 membrane results in 80.8% color removal and 79.6% COD reduction. Finally, the combination of NF and H2O2/O3 process resulted in the best treatment efficiency: 98.1% color removal and 98.2% COD reduction. Thus, NF & H2O2/O3 process can be considered as one of the best treatment methods for waste soy sauce, which requires high intrinsic color removal and COD reduction efficiencies.


2002 ◽  
Vol 45 (10) ◽  
pp. 105-111 ◽  
Author(s):  
E.J. Fontenot ◽  
M.I. Beydilli ◽  
Y.H. Lee ◽  
S.G. Pavlostathis

The objective of this study was to assess the biological decolorization of two reactive anthraquinone dyes (Reactive Blue 4, RB 4; Reactive Blue 19, RB 19) under methanogenic conditions. Using a mixed, methanogenic culture, batch assays were performed to evaluate both the rate and extent of color removal as well as any potential inhibition. The effect of initial dye, biomass, and organic feed concentration, as well as the effect of repetitive dye addition on color removal kinetics and culture inhibition were assessed. Overall, a lower rate and extent of color removal was observed in RB 4-amended cultures as opposed to the RB 19-amended cultures. For an incubation time of ca. 15 days and an initial dye concentration of 2000 mg/L, the extent of color removal was 50 and 95% for RB 4 and RB 19, respectively. Inhibition of acidogenesis and to a larger degree of methanogenesis, resulting in accumulation of volatile fatty acids, was observed in both RB 4- and RB 19-amended cultures. Although the degree of inhibition varied among the two dyes tested (RB 19 was more inhibitory than RB 4), an increase of inhibition was observed with increasing initial dye concentration. At an initial dye concentration of 500 mg/L or higher, methane production was lower than 6% of that of the control culture for both RB 4 and RB 19. However, color removal occurred despite culture inhibition.


2019 ◽  
Vol 8 (4) ◽  
pp. 1786-1792

The best known procedures for effluent treatment from petrochemical industry are to be discussed and systematized. This article briefs the concerns raised due to wastewaters released by petrochemical industry, treatment methods presently used for treating the petrochemical industrial effluents and new innovative processes proposed for the petrochemical industrial effluents. This paper investigates the various effluent treatment methods for the removal of color and COD reduction in caprolactam effluent. The results demonstrated that advanced oxidation processes are found to be effective for the removal of color and COD reduction from caprolactam effluent.


Sign in / Sign up

Export Citation Format

Share Document