Cellulose nanocrystal mediated fast self-healing and shape memory conductive hydrogel for wearable strain sensors

2021 ◽  
Vol 170 ◽  
pp. 272-283
Author(s):  
Guifa Xiao ◽  
Ying Wang ◽  
Hui Zhang ◽  
Zhaodong Zhu ◽  
Shiyu Fu
Author(s):  
Shanshan Wu ◽  
Zijian Shao ◽  
Hui Xie ◽  
Tao Xiang ◽  
Shaobing Zhou

A type of supramolecular polyampholyte hydrogel with salt-mediated triple shape-memory effect, ionic conductivity, high stretchability and self-healing property was fabricated, which can be applied for strain sensors to monitor human health.


2020 ◽  
Vol 260 ◽  
pp. 126884 ◽  
Author(s):  
Kaili Song ◽  
Weiming Zhu ◽  
Xiaoyan Li ◽  
Zhicheng Yu

Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 3947 ◽  
Author(s):  
Li Tang ◽  
Shaoji Wu ◽  
Jie Qu ◽  
Liang Gong ◽  
Jianxin Tang

Hydrogels, as classic soft materials, are important materials for tissue engineering and biosensing with unique properties, such as good biocompatibility, high stretchability, strong adhesion, excellent self-healing, and self-recovery. Conductive hydrogels possess the additional property of conductivity, which endows them with advanced applications in actuating devices, biomedicine, and sensing. In this review, we provide an overview of the recent development of conductive hydrogels in the field of strain sensors, with particular focus on the types of conductive fillers, including ionic conductors, conducting nanomaterials, and conductive polymers. The synthetic methods of such conductive hydrogel materials and their physical and chemical properties are highlighted. At last, challenges and future perspectives of conductive hydrogels applied in flexible strain sensors are discussed.


Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1737 ◽  
Author(s):  
Yuanyuan Chen ◽  
Kaiyue Lu ◽  
Yuhan Song ◽  
Jingquan Han ◽  
Yiying Yue ◽  
...  

Hydrogel-based strain sensors inspired by nature have attracted tremendous attention for their promising applications in advanced wearable electronics. Nevertheless, achieving a skin-like stretchable conductive hydrogel with synergistic characteristics, such as ideal stretchability, excellent sensing performance and high self-healing efficiency, remains challenging. Herein, a highly stretchable, self-healing and electro-conductive hydrogel with a hierarchically triple-network structure was developed through a facile two-step preparation process. Firstly, 2, 2, 6, 6-tetrametylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibrils were homogeneously dispersed into polyacrylic acid hydrogel, with the presence of ferric ions as an ionic crosslinker to synthesize TEMPO-oxidized cellulose nanofibrils/polyacrylic acid hydrogel via a one-pot free radical polymerization. A polypyrrole conductive network was then incorporated into the synthetic hydrogel matrix as the third-level gel network by polymerizing pyrrole monomers. The hierarchical 3D network was mutually interlocked through hydrogen bonds, ionic coordination interactions and physical entanglements of polymer chains to achieve the target composite hydrogels with a homogeneous texture, enhanced mechanical stretchability (elongation at break of ~890%), high viscoelasticity (maximum storage modulus of ~27.1 kPa), intrinsic self-healing ability (electrical and mechanical healing efficiencies of ~99.4% and 98.3%) and ideal electro-conductibility (~3.9 S m−1). The strain sensor assembled by the hybrid hydrogel, with a desired gauge factor of ~7.3, exhibits a sensitive, fast and stable current response for monitoring small/large-scale human movements in real-time, demonstrating promising applications in damage-free wearable electronics.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3574
Author(s):  
Pejman Heidarian ◽  
Hossein Yousefi ◽  
Akif Kaynak ◽  
Mariana Paulino ◽  
Saleh Gharaie ◽  
...  

Electroconductive hydrogels with stimuli-free self-healing and self-recovery (SELF) properties and high mechanical strength for wearable strain sensors is an area of intensive research activity at the moment. Most electroconductive hydrogels, however, consist of static bonds for mechanical strength and dynamic bonds for SELF performance, presenting a challenge to improve both properties into one single hydrogel. An alternative strategy to successfully incorporate both properties into one system is via the use of stiff or rigid, yet dynamic nano-materials. In this work, a nano-hybrid modifier derived from nano-chitin coated with ferric ions and tannic acid (TA/Fe@ChNFs) is blended into a starch/polyvinyl alcohol/polyacrylic acid (St/PVA/PAA) hydrogel. It is hypothesized that the TA/Fe@ChNFs nanohybrid imparts both mechanical strength and stimuli-free SELF properties to the hydrogel via dynamic catecholato-metal coordination bonds. Additionally, the catechol groups of TA provide mussel-inspired adhesion properties to the hydrogel. Due to its electroconductivity, toughness, stimuli-free SELF properties, and self-adhesiveness, a prototype soft wearable strain sensor is created using this hydrogel and subsequently tested.


2021 ◽  
Author(s):  
Zonghui Huang ◽  
Jianfeng Ban ◽  
Lulu Pan ◽  
Shuqing Cai ◽  
Junqiu Liao

Star-shape memory polyurethanes that combine thermally responsive and self-healing properties.


Cellulose ◽  
2021 ◽  
Vol 28 (7) ◽  
pp. 4295-4311
Author(s):  
Yue Jiao ◽  
Kaiyue Lu ◽  
Ya Lu ◽  
Yiying Yue ◽  
Xinwu Xu ◽  
...  

2016 ◽  
Vol 7 (47) ◽  
pp. 7278-7286 ◽  
Author(s):  
Jian Zhao ◽  
Rui Xu ◽  
Gaoxing Luo ◽  
Jun Wu ◽  
Hesheng Xia

The poly(siloxane-urethane) elastomers with microphase separation structure and Diels–Alder bonds show high healing efficiency, good mechanical property and good biocompatibility.


Sign in / Sign up

Export Citation Format

Share Document